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Foreword

The class “Numerical Modelling and Hydraulics” is a new name for the 
old course “Hydroinformatics”, which was offered for the first time in the 
spring 2001 at the Norwegian University of Science and Technology. It is 
an undergraduate course for the 3rd/4th year students. The prerequisite 
was a basic course in hydraulics/hydromechanics/fluid mechanics, that 
includes the derivation of the basic equations, for example the continuity 
equation and the momentum equation. 

When I started my employment at the Norwegian University of Science 
and Technology, I was asked to teach the course and make a plan for its 
content. The basis was the discontinued course “River Hydraulics”, 
which also included topics on limnology. I was asked to include topics on 
water quality and also on numerical modelling. When adding topics to a 
course, it is also necessary to remove something. I have removed some 
of the basic hydraulics on the momentum equation, as this is taught in 
other courses the students had previously. I have also removed parts of 
the special topics of river hydraulics such as compound sections and 
bridge and culvert analysis. The compound sections hydraulics I believe 
can not be used in practical engineering anyway, as the geometry is too 
simplified compared with a natural river. The bridge analysis is based on 
simplifications of 1D flow models for a 3D situation. In the future, I 
believe a fully 3D model will be used instead, and this topic will be obso-
lete. Some of the topics on marine engineering have been removed, as a 
new course “Marine Physical Environment” at Department of Structural 
Engineering at NTNU is covering these subjects. This course also con-
tains some ice hydraulics and related cold climate engineering, topics 
which has not been included in the present text.

The resulting course included classical hydraulics, sediment transport, 
numerics and water quality. It was difficult to find one textbook covering 
all topics. The books were also very expensive, so it was difficult to ask 
the students to buy several books. Instead I wrote the present notes. I 
want to thank the Department for giving me time for this, and hope the 
book will be of interest for the students.

I also want to thank all the people helping me with material, advice and 
corrections to the book. Dr. Knut Alfredsen has provided advice and 
material on the numerical solution of the Saint-Venant’s equation and on 
the habitat modelling. Prof. Torkild Carstens has given advice on jets, 
plumes and water abstraction. Prof. Liv Fiksdal provided advice about 
water biology and Mr. Yngve Robertsen has given advice on the flood 
wave formulas. I also want to thank my students taking the course in the 
spring 2001, finding to a large number of errors and making suggestions 
for improvements. For an earlier version, Prof. Hubert Chanson provided 
useful corrections. 

The new name reflects the focus of numerical models and hydraulics. 
The word “Hydroinformatics” is very broad and covers a large number of 
topics not included in the present book. In addition to numerical models, 
also some topics of Hydraulics are covered, for example flood waves, 
sediment transport, stratified flow and physical model tests.
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In memory of Prof. Dagfinn K. Lysne
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1. Introduction

1.1 Motivation

In today’s society, environmental issues are an important concern in 
planning projects related to water resources. Discharges of pollutants 
into rivers and lakes are not allowed, unless special permission is given 
by the appropriate authority. In an application for discharge into a receiv-
ing water body, an assessment of potential damages must be included. 
A numerical model is useful in the computation of the effects of the pollu-
tion. 

Over the last years, flooding of rivers and dam safety have been major 
issues in Norway. The new regulations for planning, construction and 
operation of dams has increased demands for dam safety. All Norwegian 
dams will have to be evaluated with regards to failure, and the down-
stream effects have to be assessed. In this connection, flood zone map-
ping of most major rivers have to be undertaken, and this will create 
considerable work for hydraulic engineers in years to come. 

The last twenty years have also seen the evolution of computers into a 
very applicable tool for solving hydraulic engineering problems. Many of 
the present-day numerical algorithms were invented in the early 1970’s. 
At that time, the computers were still too slow to be used for most practi-
cal flow problems. But in the last few years the emergence of fast and 
inexpensive personal computers have changed this. All the numerical 
methods taught in this course are applied in programs running on a PC. 

The most modern numerical models often have sophisticated user inter-
faces, showing impressive colour graphics. People can easily be led to 
an understanding that the computer solves all the problems with mini-
mum knowledge of the user. Although present day computer programs 
can compute almost all problems, the accuracy of the result is still uncer-
tain. An inexperienced user may produce convincing and impressive col-
our figures, but the accuracy of the result may still not be good enough to 
have a value in practical engineering. It is therefore important that the 
user of the computer programs has sufficient knowledge of both the 
numerical methods and their limitation and also the physical processes 
being modelled. The present book therefore gives several chapters on 
processes as basic hydraulics, limnology, sediment transport, water 
quality etc. The knowledge should be used to provide reasonable input 
for the numerical models, and assessing their results. Many empirical 
formulas are given, providing further possibilities for checking the result 
of the numerical method for simpler cases. 

The numerical methods also have limitations with regards to other 
issues, for example modelling of steep gradients, discontinuities, proc-
esses at different scales etc. The numerical models itself may be prone 
to special problems, for example instabilities. Often, a computer program 
may not include all processes occurring in the water body. The user 
needs to be aware of the details of the numerical methods, its capabili-
ties and limitations to assess the accuracy of the results.
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1.2 Classification of computer programs

There exist a large number of computer programs for modelling fluvial 
hydraulics and limnology problems. The programs have varying degree 
of sophistication and reliability. The science of numerical modelling is 
progressing rapidly, making some programs obsolete while new pro-
grams are emerging. 

The computer programs can be classified according to:

- what is computed
- how many dimensions are used
- particulars of the numerical methods

Many computer programs are tailor-made for one specific application. 
Examples are:

- Water surface profiles (HEC2)
- Flood waves (DAMBRK)
- Water quality in rivers (QUAL2E)
- Sediment transport and bed changes (HEC6)
- Habitat modelling (PHABSIM)

This is particularly the case for one-dimensional models, developed sev-
eral years ago, when the computational power was much less than 
today. There are also more modern one-dimensional programs, using 
more sophisticated user interfaces and also including modules for com-
puting several different problems. Examples are:

- HEC-RAS
- MIKE11
- ISIS

In recent years, a number of multi-dimensional computer programs have 
been developed. These also often include modules for computing sev-
eral different processes, for example water quality, sediment transport 
and water surface profiles.

Multi-dimensional programs may be:

- two-dimensional depth-averaged 
- three-dimensional with a hydrostatic pressure assumption
- fully three-dimensional

There also exist width-averaged two-dimensional models, but these are 
mostly used for research purposes.

The three-dimensional models solve the Navier-Stokes equations in two 
or three dimensions. Sometimes the equations are only solved in the 
horizontal directions, and the continuity equation is used to obtain the 
vertical velocity. This is called a solution with a hydrostatic pressure 
assumption. The fully 3D models solve the Navier-Stokes equations also 
in the vertical direction. This gives better accuracy when the vertical 
acceleration is significant.

The various algorithms used by these types of programs are described 
in the following chapters, together with the physics involved.
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2. River hydraulics

The classical river hydraulics described in this chapter forms the basis 
for the numerical modelling of flood waves and river pollutant dispersion. 
In this chapter, a hydrostatic pressure is assumed in the vertical direc-
tion, and also that the water flow is one-dimensional.

2.1 Uniform flow 

The definition of uniform flow can be visualized by looking at water flow 
in a very long flume, where the water depth and velocities are constant 
at any point over the length of the flume. In a natural river this never 
occurs, but the concept is useful for developing hydraulic engineering 
formulas. Fig. 2.1.1 shows a section of a wide channel, with forces on 
the water. I is the slope of the water surface and h is the water depth.

The forces on the water volume in the direction parallel to the river bed/
surface will be:

Bed shear:  

Gravity: 

The direction of the flow is called x, h is the water depth, I is the slope of 
the water surface, gx is the component of the gravity in the x-direction 
and τ is the shear stress on the bed. Setting the two forces equal to each 
other gives the formula for the bed shear stress:

(2.1.1)

The density of water is denoted ρ, and g is the acceleration of gravity. A 
method to compute I is presented in the next chapter. 

The vertical velocity profile in a river with uniform flow can be described 
by boundary layer theory. Early experiments were carried out by 
Nikuradse (1933) using uniform spheres, and later Schlichting (1936) 
using particles of varying shapes. The experiments produced the follow-
ing formula for the vertical velocity profile for uniform flow (Schlichting, 
1979): 

(2.1.2)

U is the velocity, and it is a function of the distance, y, from the bed. The 
parameter κ is an empirical constant, equal to 0.4. The formula only 
applies for rough surfaces, and ks is a roughness coefficient. It is equiva-
lent to the particle diameter of the spheres glued to the wall to model 
roughness elements. The variable u* is the shear velocity, given by:

(2.1.3)

Eq. 2.1.2 is also called the logarithmic profile for the water velocity. 
Schlicting’s formulas were based on data from experiments done in air, 
but since non-dimensional parameters were used, the results worked 
very well also for water flow. Schlichting found the wall laws applies for 

Fb τΔx=

Fg ρgxV ρgIΔxh= =

τ ρghI=

U
u*
----- 1

κ
--- 30y

ks
--------- 
 ln=

u*
τ
ρ
---=
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Manning’s formula:
all boundary layers, also for non-uniform flow, as long as only the veloci-
ties very close to the wall are considered. 

To use the formula, the next question is which roughness to choose. 
There exist a number of different relations between the effective rough-
ness and the grain size distribution on the river bed. Van Rijn (1982) 
found the following formula, based on 120 flume data sets:

(2.1.4)

The variable d90 denotes the grain size sieve where 90 % of the material 
is finer. Van Rijn reported that there were large uncertainties in this for-
mula, and that the number 3 was an average value where the data set 
suggested a variation range between 1 and 10. Other researchers have 
used different formulas. Hey (1979) suggested the following formula 
based on data from a natural river with coarse material, and laboratory 
experiments with cubical/spherical elements: 

(2.1.6)

Kamphuis (1974) made a new formula based on his flume experiments:  

(2.1.7)

The value 2 varied between 1.5 and 2.5 in the experiments. Kamphuis 
used a zero reference level of 0.7d90, which will affect the results. 

Schlichting (1979) carried out laboratory experiments with spheres and 
cones. Using 45 degree cones placed right beside each other, the ks 
value was equal to the cone height. 

In other words, it is difficult to obtain an exact estimate of the ks value. 

2.2 Friction formulas

A number of researchers have developed formulas for the average 
velocity in a channel with uniform flow, given the water depth, water 
slope and a friction factor. The formulas are empirical, and the friction 
factors often depend on the water depth. The most common formulas 
are:

Manning’s formula:

(2.2.1)

The hydraulic radius, rh, is given by:

(2.2.2)

where A is the cross-sectional area of the river and P is the wetted 
perimeter. 

Often the Strickler’s M value is used instead of Manning’s coefficient, n. 

ks 3d90=

ks 3.5d84=

ks 2d90=

U
1
n
--- rh

2
3
---

I

1
2
---

=

rh
A
P
---=
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Some Manning’s coeffi-
cients:

Glass models:   
0.009-0.01

Cement models:
0.011-0.013

Concrete lined channels:
0.012-0.017

Earth lined channels:
0.018-0.04

Rock lined channels:
0.025-0.045

Earth lined rivers:
0.02-0.05

Mountain rivers with stones:
0.04-0.07

Rivers with weed:
0.05-0.15 

Continuity equation:
The relation is:

(2.2.3)

giving:

(2.2.4)

Given the grain size distribution on the bed, the Manning’s friction factor 
can be estimated by the following empirical formula (Meyer-Peter and 
Müller, 1948):

 (2.2.5)

Given the water velocity and the friction factor, the formulas can be used 
to predict the water depth. Together with the continuity equation (2.2.6) 
the formulas can also be used to estimate the water surface slope or the 
friction loss for non-uniform flow. Thereby the water elevations can be 
found. A further description is given in Chapter 3.

(2.2.6)

The water discharge pr. unit width of the river is often denoted q.

2.3 Singular losses

Using the Energy Equation/Bernoulli’s Equation for the water flow in a 
river, it is possible to compute the energy loss and the water surface 
location. The friction loss is given by the roughness of the river bed. 
There are also other energy losses, called singular losses. These are 
identified with particular constructions in the rivers, for example a bridge 
pier, or a river bend. The head losses are associated with eddies gener-
ated around the loss point, usually in connection with flow expansion. A 
recirculation zone forms, dissipating energy. The head loss, hf, can be 
computed as:

(2.3.1)

where k is a head loss coefficient related to the geometry of the river/
obstruction. 

In natural rivers, it is often difficult to identify singular losses and assign a 
value to each loss. Instead, a different Manning’s friction factor is often 
used, where the effective friction factor is used, as a combination of the 
singular losses and the friction loss. The friction factor is then found by 
calibration.

It is possible to use Eq. 2.3.1 for river contractions, for example in con-
nection with bridges and bridge piers. However, the head loss coefficient 
is difficult to find without using measurements in the field/lab.

M
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    The Froude number:

Fr
U

gy
----------=
2.4 Critical flow

Looking at one-dimensional water flow in a channel, there are two types 
of energy: Kinematic energy due to the water velocity, and pressure due 
to the water depth, y, and weight of the water. The sum of these energies 
is called the specific energy height of the section, E [meters]:

(2.4.1)

The specific energy may change along the length of the river, depending 
on the water discharge, roughness, bed slope etc. If the water is given a 
specific energy, Eq. 2.4.1 can be used to find the water depth: 

(2.4.2)

Introducing the continuity equation (2.2.6), the equation can be written:

(2.4.3)

or

(2.4.4)

This third-order equation has three possible solutions. Only two are 
physically possible. If we solve for the specific energy, we get:

(2.4.5)

The minimum specific energy to transport a given volume of water is 
obtained by derivation of Eq. 2.4.5, and setting the result to zero:

(2.4.6)

(2.4.7)

Using the continuity equation, the equation above can also be written:

(2.4.8)

 
The term on the left side of the equation is also called the Froude 
number. For a minimum amount of specific energy, the Froude number is 
unity, as given in Eq. 2.4.8. If the Froude number is below unity, the flow 
is subcritical. The flow is supercritical if the value is higher than unity 

Supercritical flow is very seldom encountered in natural rivers. It exists in 
water falls or rapids. If supercritical flow occur in a river with stones on 
the bed, usually a hydraulic jump is formed. Normally, the flow in a river 
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------–=
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is subcritical. 

The Froude number is important for the numerical solution of equations 
for water depth in a river. If critical flow occur, instabilities often emerge 
in the numerical algorithms. 

Irregular cross-sections

The derivation above is valid for channels with rectangular cross-
sections. For a channel with irregular cross-section, the water velocity is 
replaced by Q/A. The specific energy for the section becomes:

(2.4.9)

The minimum specific energy for the section is obtained by derivation 
with respect to y and setting this to zero, similar to what was done for the 
rectangular channel:

 (2.4.10)

For small changes in the water level, the incremental cross-sectional 
area, dA is given by 

       dA = Bdy (2.4.11)

The top width of the cross-section is denoted B. Inserted into Eq. 2.4.10, 
this gives:

(2.4.12)

The square root of the left side of the equation is the Froude number for 
a cross-section with a general complex geometry: 

(2.4.13)

The hydraulic jump

The hydraulic jump is a transformation of the water flow from supercriti-
cal to subcritical flow. Visually, it looks like a standing wave in the chan-
nel. The water level is higher downstream than upstream. 

It is possible to derive a relationship between the water level upstream, 
h1, and downstream, h2, of the jump.

The momentum equation gives the force on an obstacle as:

(2.4.14)

The parameters y is the effective height of the hydrostatic pressure.

For a rectangular channel where F=0 and y= 1/2 y:

E y
Q
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2gA
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------------+=
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------- 1
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---------dA
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-------– 0= =

Q
2
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---------- 1=

Fr Q
2
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-----------= =
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F

(2.4.15)

Divide by the width and the density:

(2.4.16)

Solve with respect to q2:

(2.4.17)

Use the definition of the Froude number:

(2.4.18)

Solves the equation with respect to q2, and eliminates q2 with the 
equation above:

(2.4.19)

(2.4.20)

Solves with respect to y1/y2:

(2.4.21)

Solves the second order equation:

(2.4.22)

Given the water level and the Froude number downstream of the jump, 
the water level upstream of the jump can be computed. It can be shown 
that a formula where the indexes 1 and 2 are changed is also valid.
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2.5 Steady non-uniform flow

It is possible to compute the water surface of a steady non-uniform flow 
by analytical formulas, as long as the cross-sectional shape is rectangu-
lar. The formulas are derived in the following. However, if the cross-sec-
tion does not have rectangular shape, the water surface location have to 
be computed numerically. This is described in Chapter 3.

The derivation of the formula for the water depth is based on Fig. 2.5.1. 
The total height of the energy line is denoted H, so that:

(2.5.1)

The energy slope, If, can be computed from for example Manning’s for-
mula. For our case, the slope can be written as:

(2.5.2)

The term in the brackets most right in the equation is the specific energy, 
E, of the flow. The term can be rewritten:

 (2.5.3)

The continuity equation gives:

(2.5.4)

Derivation with respect to y gives:

tum

d

ater
rface

ergy line

 y2

z2

U2
2/2g

I0

If

Figure 2.5.1 A longitudinal profile of a 
channel is shown, between the two 
cross-sections 1 and 2. The distance 
between the sections is dx. The water  
depths are denoted y and the bed level 
elevation is denoted z. The bed slope 
is denoted I0, and the slope of the 
energy line is denoted If. Note the 
energy line is located a distance above 
the water level, equal to the velocity 
height, U2/2g. 
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(2.5.5)

The final formula needed is for a general cross-sectional shape:

(2.5.6)

This is inserted into Eq. 2.5.5, and the result of this in Eq. 2.5.3, giving:

 (2.5.7)

Inserted into Eq. 2.5.2, the result is:

(2.5.8)

which can be rearranged to:

(2.5.9)

In a wide, rectangular channel, the Froude number can be written:

(2.5.10)

Similarly, the friction slope, If, can be expressed as a function of con-
stants and y, using Mannings Equation:

(2.5.11)

The water depth is here denoted y. It is used instead of the hydraulic 
radius, meaning the formula is only valid for wide, rectangular channels.

Eq. 2.5.10 and Eq. 2.5.11 can be inserted into Eq. 2.5.9, resulting in a 
formula for the change in the water depth only being a function of con-
stants and y. This can then be integrated analytically to compute func-
tions for changes in water depths in wide channels with constant width. 

For more complex cases it is possible to use a spreadsheet to compute 
the water surface. Such cases can be channels with varying widths or 
non-rectangular cross-sections. An example of such a spreadsheet is 
given in the figure below. Note, for sub-critical flow we start with the 
downstream cross-section, which is no. 1 in the table. 
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Cross-
section no.

Dept

1 (given)

2 y1+Δy1

3

4

1 1.0

2 0.957

The method of invoking 
more iterations is depend-
ent on the particular 
spreadsheet program. For 
Lotus 123, use F9 on the 
keyboard repeatedly. For 
MS Excel, use the menu 
Tools, Options, Calcula-
tions, and cross off Itera-
tions, and give a number 
in the edit-field, for exam-
ple 50.
 

Also note that the water depths are calculated in the cross-sections. The 
other parameters in the table are computed as an average value 
between cross-sections. This means the water velocity in the table is a 
function of two water depths. Iterations are therefore necessary.

The numbers in the spreadsheet is an example with a water discharge of 
1 m3/s in a 1 m wide channel, a Manning-Strickler value of 50 a slope of 
0.001 and a dx of 50 meters. 

Classification of surface profiles

Bakhmeteff (1932) proposed a classification system for water surface 
profiles, which is included in almost all textbooks on water surface pro-
files. The system is useful for understanding water surface profiles, but 
the classifications itself is rarely used in engineering practice. The pro-
files are classified according to the bed slope, the critical slope and the 
water depth, as given in Table 2.5.1. The water depth is denoted y, the 
slope is denoted I, and E is the specific energy of the water. Subscripts 0 
denotes the bed and c denotes critical slope/depth. The figures at the 
right of the table show longitudinal profiles of the surface profiles. The 
lines for the critical depth and normal depth are also given. The normal 
depths are found by using for example Manning’s equation, given the 
roughness, bed slope and water discharge. The critical depth is found 
from Eq. 2.4.7.

The system classifies 
each surface profile with 
a letter and a number. 
The letter is only a func-
tion of the slope of the 
river at the given dis-
charge. The letters given 
in the table on the right 
are used. 

The number is an index 
for the actual Froude 
number in the channel. 
Subcritical flow is 
denoted 1 while super-

h, y U
Froude 

number, Fr
Energy 
slope, If

Δy

Continuity Definition Eq. 2.5.11 Eq. 2.5.9

Eq. 2.5.10

1.0 0.322 0.000429 -0.04213

:

Letter Stands for Bed slope

M Mild Subcritical

S Steep Supercritical

C Critical Critical

H Horizontal Horizontal

A Adverse Adverse
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  yc

yc

yc

y0

  yc

yc

  y0
critical flow is denoted 3. The index 2 can mean either supercritical or 
subcritical, depending on the letter. This is given in more detail in Table 
2.5.1.

Table 2.5.1. Classification of water surface profiles

Examples of water surface profiles: When a mild-sloping river flows 
into a reservoir, we have an M1 curve. The water profile just upstream a 
spillway can be M2, H2 or A2. Profiles just before a hydraulic jump can 
be M3, H3 or A3. The S1 profile can be found after a hydraulic jump in a 
steep channel.

2.6 Waves in rivers

It is possible to derive formulas for waves travelling up or down a chan-
nel with constant width and slope. Rough estimation of such waves can 
thereby be made, and the formulas can also be used to evaluate the 
results from numerical models. Two types of waves can be described: 

- kinematic waves
- dynamic waves

Both types are derived and discussed in the following.

Dynamic wave

An equation for the dynamic wave is derived by looking at the longitudi-
nal profile of the wave given in Fig. 2.6.1: 

Channel 
slope

Profile 
type

Depth range Fr
dy/
dx

dE/
dx

Mild

I0<Ic

y0>yc

M1 y>y0>yc <1 >0 >0

M2 y0>y>yc <1 <0 <0

M3 y0>yc>y >1 >0 <0

Steep

I0>Ic

y0<yc

S1 y>yc>y0 <1 >0 >0

S2 yc>y>y0 >1 <0 >0

S3 yc>y0>y >1 >0 <0

Critical
I0=Ic

y0=yc

C1 y>yc <1 >0 >0

C3 y<yc >1 >0 <0

Horizontal

I0=0

H2 y>yc <1 <0 <0

H3 y<yc >1 >0 <0

Adverse

I0<0

A2 y>yc <1 <0 <0

A3 y<yc >1 >0 <0

A2

A3

 H2

   H3

 C1

   C3

S1

 S2

   S3

M1

       M2

   M3
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Fig 2.6.1 Definition s
of a wave travelling d
river. The upstream d
and velocity are deno
and U1, respectively 
downstream depth a
velocity are denoted 
U2 respectively. The 
of the wave is denote
A steady situation is obtained if the reference system moves along the 
channel with velocity c. The water velocities upstream and downstream 
of the wave becomes U1 - c and U2 - c, respectively. The momentum 
equation gives:

(2.6.1)

Together with the continuity equation:

(2.6.2)

Solving the continuity equation with respect to U2:

(2.6.3)

Inserting this into the momentum equation, eliminating U2:

(2.6.4)

Eliminating the c’s on the right hand side, and moving the term to the left 
side:

(2.6.5)

Simplifying the first term and changing the second term:

(2.6.6)

Further simplifying the first term and changing the sign of the second  
term:

(2.6.7)

Dividing by the second part of the first term:
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If Eq. 2.6.10 is combined 
with the definition of the 
Froude number, the fol-
lowing formula is 
obtained: 

If Fr < 1, c can be both 
positive and negative. In 
subcritical flow, a wave 
can then travel both 
upstream and down-
stream a channel. 

If Fr > 1 then c will always 
be positive. For supercriti-
cal flow, the wave can only 
travel downstream.

c U
U
Fr
---------±=
(2.6.8)

Taking the square root of each side, multiplying with -1 and moving U1 to 
the other side: 

(2.6.9)

If the wave is small, y2 and y1 are approximately equal. The equation 
then becomes:

(2.6.10)

Kinematic wave

The formula for a kinematic wave with speed c, is derived from the conti-
nuity equation, looking at a similar situation as in Fig. 2.6.1. This gives:

(2.6.11)

The differential of Q can be derived from Mannings Equation (Eq. 2.2.1) 
for a wide, rectangular channel, differentiated with respect to the water 
depth:

 

(2.6.12)

or rewritten:

(2.6.13)

The formula for the area of the cross-section is then differentiated with 
respect to y:

(2.6.14)

Inserting dA and dQ from the two equations above into Eq. 2.6.11 gives:

(2.6.15)

which is the formula for the kinematic wave.

Wave shape

Eq. 2.6.10 shows that the wave speed will increase with larger depth. 
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Figure 2.6.2. Change of 
wave shape over time. 
The initial wave is shown 
on the left. The water is 
flowing from the left to the 
right. The right figure 
shows the shape of the 
wave after some time. The 
front is steeper and the tail 
is less steep.

 y1

P1
This is also given from Mannings Equation (2.2.1), as the increased 
water velocity will lead to increased depth. The shape of a wave will 
thereby change as it moves downstream the channel. Assuming the 
front and the end of the wave have smaller depths, and the maximum 
depth is at the center of the wave, two phenomena will take place:

1. The wave front will become steeper
2. The wave tail will become less steep

This can be seen in Fig. 2.6.2:

2.7 The Saint-Venant equations

A general flood wave for a one-dimensional situation is described by the 
Saint-Venant equations. Then the water velocity and water depth can 
vary both in time and along the one spatial dimension. The Saint-Venant 
equations is also called the full dynamic equation for computation of 1D 
flood waves. 

The equation is derived by looking at a section of a channel as given in 
Fig. 2.7.1. The channel has a slope I, water depth y, width B, water dis-
charge Q and velocity U.

A continuity equation for this situation is first derived. Looking at the 
water discharge going out and in of the volume in the time period Δt, we 
obtain:

(2.7.1)

This amount of water must be equal to the volume change caused by ris-

h

x

h

 x

   y2

Figure 2.7.1 A longitudinal profile of a 
channel, between two sections 1 and 
2. The distance between the sections 
is Δx. The water depth is denoted y. 
The bed slope is denoted I0.
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x

P2

ΔV Q Q
dQ
dx
-------Δx+ 
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Continuity equation:
ing/falling of the water level: :

(2.7.2)

Noting that B also may change as the water level rise/fall, one can 
instead write the equation as: 

(2.7.3)

Where A is equal to the cross-sectional area of the flow. Note, in a rec-
tangular channel, B is constant, and Eq. 2.7.2 is obtained.

Combining Eq. 2.7.1 and 2.7.3, the following equation is obtained:

(2.7.4)

This is the continuity equation often used in connection with solving the 
Saint-Venant equation. The Saint-Venants equation itself is derived from 
Newton’s second law:

(2.7.5)

For the section in Fig. 2.7.1, The acceleration term on the right hand 
becomes:

(2.7.6)

Then the external forces on the volume are given. There are four forces: 

1. Gravity component: 

(2.7.7)

This is the same component as used for the derivation of the formula for 
the bed shear stress for uniform flow.

2. Bed shear stress:

(2.7.8)

The term is negative, as the force is in the negative x-direction. Often, a 
friction slope is introduced: 

(2.7.9)

The friction slope is computed from an empirical friction formula, for 
example the Manning’s equation. The term then becomes:
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(2.7.10)

3. Pressure gradient:

The pressure gradient is due to the different water level on each side of 
the element. The hydrostatic pressure force on a water cross-section in 
a rectangular channel is given as:

(2.7.11)

For the control volume in Fig. 2.7.1, there are two forces, one on each 
side of the volume. The total force from the pressure gradient must 
therefore be the sum of these two hydrostatic forces.

(2.7.12)

The depth can be written as a function of the surface slope:

(2.7.13)

(2.7.14)

The last term contains a small number squared, so this is much smaller 
than the second last term. The last term is therefore neglected. This 
gives:

(2.7.15)

The term is negative, because a positive depth-gradient will cause a 
pressure force in the negative x-direction.

4. Momentum term:

The momentum equation for the control volume is:

 (2.7.16)

(2.7.17)

The negative sign is because a positive velocity gradient will cause more 
momentum to leave the volume than what enters. This causes a force in 
the negative x-direction.

Setting the sum of all the four forces equal to the acceleration term, one 
obtains:

(2.7.18)
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Saint-Venant equation:

Figure 2.8.1 Cross-sec-
tion with four measured 
velocity profiles. The 
average velocity in each 
profile is computed and 
multiplied with the depth 
and the width, w, of each 
sector. This is then 
summed up over all the 
profiles to get the water 
discharge.
or:

(2.7.19)

This can be simplified to:

(2.7.20)

The Saint-Venant equations must be solved by a numerical method. This 
is described in Chapter 3.

2.8 Measurements of water discharge in a natural river

There are several methods to measure the water discharge in a river. 
The most common method is to use a current meter and measure 
directly at various points in a cross-section of a river. This can be done at 
several water discharges, and a rating curve can be obtained, where the 
water discharge as a function of the water elevation is given. Using daily 
observations of the water levels, the curve can give a time series of the 
water discharge. This is used to predict floods and average water dis-
charge in the river for use in hydropower plants or water supply.

Direct measurements of discharges in rivers today is usually done by an 
ADCP instrument. The ADCP is an abbreviation for Acoustic Doppler 
Current Profiler. The ADCP works by sending out an acoustic signal from 
the instrument into the water. Small particles in the water reflect the sig-
nal back to a receiver on the instrument. The signal will be a function of 
the speed of the particle relative to the instrument. By measuring at a 
large number of points in the cross-section, the discharge can be com-
puted. 

The ADCP is usually fitted on a boat which is dragged across the water 
surface in the cross-section. The beam of the instrument points vertically 
downwards, and measures several points in the vertical profile. An echo-
sounding device is usually also included in the instrument, measuring 
the water depth. Modern ADCPs also have a bottom tracking device, 
measuring the distance the instrument has traversed. A GPS can also 
be fitted with the instrument, enabling correlation between measure-
ments and for example a digital terrain model. 
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Figure 2.8.2  Picture o
f boat with ADCP for laboratory use.

Figure 2.8.3  Example of results from the ADCP measurements
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Another method is to use a tracer, for example radioactive material or a 
chemical that is easily measured for small concentrations in water. A 
known quantity, m, of the tracer is dumped in the river. Further down-
stream, where the tracer is completely mixed in the water, the concentra-
tion, c, is measured over time. The amount of tracer can be computed 
as:

    (2.8.1)

Assuming steady flow, the water discharge, Q, is constant. The quantity 
of tracer and the integral of the concentration measurement is known, so 
the discharge can be computed as:

(2.8.2)

The method is expensive, as tracer is lost for each measurement. Also, 
the tracer may not be environmentally friendly. Therefore, the method is 
only used very seldom, and in situations where it is difficult to do point-
velocity measurements. This can for example be during floods. 

2.9 Problems

Problem 1. Uniform flow

A natural river with depth of 2 meters, has an average water velocity of 3 
m/s. What is the maximum and minimum energy gradient? Is the flow 
supercritical or subcritical? Is this possible to see directly in the field?

Problem 2. Compound channel

A channel with the following cross-sectional geometry is considered:

The channel can be divided in three sections, A, B and C. Section B is 
the main channel, and sections A and C are the overbanks. The slope of 
the channel is 1:500.

Compute the water discharge in the channel, given a Manning-Strickler 
coefficient of 60 for the whole channel. 

Then, compute the water discharge in the channel given a Manning-
Strickler coefficient of 60 for the main channel and 40 for the overbanks.

m cQ td=

Q
m

c td
----------=

15 m
 10 m

   8 m

5 m
 3 m

A

  B

C
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Problem 3. Steady non-uniform flow

Compute the water surface profile, using a spreadsheet, behind a low 
run-of-the river dam. The width of the river is 30 meters, the water dis-
charge is 50 m3/s, the dam height is 10 meters and the rivers slope is 
1:400. 

What happens if the slope is 1:100? Compute the water surface profile 
for this situation too.

Problem 4: Location of a hydraulic jump. 

The figure shows a sketch of a longitudinal profile of the bed and water 
surface profile. Water is let out of a bottom outlet downstream a dam, at 
point A. At point B, a hydraulic jump occur. The water levels at point A 
and C are given, together with the water discharge. The question is to 
find the distance between A and B.

Data: 

Water level (gate opening) at A: yA=0.4 meters
Water level at C: yC=3 meters

Discharge: Q=6 m2/s. 
Manning-Strickler coefficient: 50.

Problem 5. Discharge measurement using tracer

2 kg of tracer is dumped in a stream. Several km downstream, the fol-
lowing concentration is measured:

Compute the water discharge in the stream.

 A B C

c, (ppm)

time (minutes)

55 56

  0

1000
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Figure 3.1.1. Sketch of a 
river with cross-
sections. 

Figure 3.1.2. Generation 
of the curve for the 
cross-sectional area as 
a function of the water 
depth. The curve is used 
as geometry input for the 
numerical models.

One problem is how to 
determine the friction 
coefficient, M. Usually, a 
calibration procedure has 
to be done, where the 
results are compared with 
measured water levels, 
and the M values adjusted 
to fit the data. Some data 
programs include auto-
matic calibration proce-
dures using this concept.
3. Numerical modelling of river flow in 1D

The 1D numerical model is the most commonly used tool in Hydraulic 
Engineering for evaluating effects of flood waves in rivers. Dispersion of 
pollutants in rivers is also mostly done using 1D models.

3.1 Steady flow

The steady flow computation uses the continuity equation and an equa-
tion for the friction loss to compute the velocity and location of the water 
surface. Manning’s formula (Eq. 2.2.1) is most commonly used. 

The computation starts with measuring the geometry of a number of 
cross-sections in the river. The distance and elevation of a number of 
points in the cross-sections are recorded. The distances between the 
cross-sections are also measured.

 
For each section, a curve is made with the wetted area as a function of 
the water level. This curve is used in the following computations.

The computation of the water elevation usually starts with a given value 
downstream, as this is the controlling value for subcritical flow. Then the 
water elevation of the upstream cross-section is to be found. The proce-
dure outlined in Chapter 2.5 can be used, applying Eq. 2.5.9. Alterna-
tively, a variation of the method is given in the following.

The energy loss between the cross-sections can be found by solving 
Manning’s equation with respect to the friction slope:

(3.1.1)

The hydraulic radius, R, is found from a similar curve as given in Fig. 
3.1.2. Looking at Fig. 3.1.3, the water surface elevation difference, Δz, 
between the cross-sections can then be found using the Energy equa-
tion, giving:

depth

area

If
U

2

M
2
R

4
3
---

--------------=
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(3.1.2)

The distance, Δx, between the cross-sections is given by the user. The 
water velocities at the two cross-sections 1 (upstream) and 2 (down-
stream) is computed from the water continuity equation: 

(3.1.3)

where the water discharge, Q, is a constant 

The procedure is then to guess a value of Δz, giving the water level for 
both cross-sections. Then A and R are taken from the curves for the two 
cross-sections, and the average values used in Eq. 3.1.1. The velocities 
in Eq. 3.1.2 are computed from Eq. 3.1.3. Eq. 3.1.2 then gives a new 
estimate of Δz. After a few iterations, the values of Δz should be the 
same as the previous iteration, and the procedure has converged. The 
solution method is usually not sensitive to the initially guessed value, so 
for example Δz=0.0 could be used.

Control sections

Eq. 3.1.6 gives the changes in the water surface between two cross-sec-
tions. The question is then which cross-section should be used to start 
the computations.

For supercritical flow, the water surface is mainly determined by the 
upstream flow. Remember, the kinematic wave theory showed that a 
wave could not propagate upstream in supercritical flow. For subcritical 
flow, the flow is usually determined by the downstream water level. This 
means that the computations should start upstream and move down-
stream in supercritical flow. For subcritical flow, the computations should 
start downstream and move upstream.

Before starting the computations, the controlling sections should be 
determined. A typical example is a critical flow section, where the flow 

z1 z2– Δz IfΔx
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Figure 3.1.3 A longitudinal profile of a 
channel is shown, between two cross-
sections 1 and 2. The distance 
between the sections is dx. The eleva-
tion of the water is denoted z. The 
slope of the energy line is denoted If.

x
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goes from subcritical to supercritical. The computations can then start in 
this section and move upstream in the subcritical flow. It can also move 
downstream in the supercritical flow. 

Another control for the water levels are reservoirs and lakes. Then the 
water surface is given. Usually, the flow is subcritical upstream of the 
lake. Then the computation starts in the lake and moves upstream.

One of the main problems is when the flow turns from supercritical to 
subcritical. A hydraulic jump will then form, and special algorithms based 
on the momentum equation have to be used. Often, these algorithms are 
not very stable, and it may be problematic to get a solution.

3.2 Unsteady flow

The one-dimensional water flow is governed by the Saint-Venant equa-
tions: water continuity:

(3.2.1)

and conservation of momentum:

(3.2.2)

The 1D models can be classified according to how many terms are used 
in Eq. 3.2.2. Solving the full Saint-Venant equations are described in 
Chapter 3.4. One simplification is to neglect the two first terms. This is 
called the equations for the diffusive wave:

(3.2.3)

If the first three terms in Eq. 3.2.2 is neglected, the kinematic wave equa-
tion emerges:

(3.2.4)

Additionally, the continuity equation (3.2.1) is solved.

The solution of the kinematic wave equation is described in Chapter 3.3.
The Muskingum method, or Hydrological routing, only uses the continu-
ity equation. This method is described in Chapter 3.5.

3.3 Unsteady flow - kinematic wave

The simplest method to compute unsteady flow in a river is by the kine-
matic wave equation. There are several solution methods for this equa-
tion. Two methods are described here: 

- Solution by differentials
- Analytical solution

Solution by differential is the standard form of solving wave equations. 
However, the kinematic wave is so simple that it is also possible to use 
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Time for X=0
given as input 

data (min)

Dischar
Given 
input d

(m3/s

0 100

10 200

20 300

30 400

40 300

50 200

60 100

Using the continuity equa-
tion to eliminate y in Man-
nings equation gives: 

U M

3
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---

Q

2
5
---

I

3
10
------

B
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------

=

an analytical solution.

Analytical solution

The solution method is based on Eq. 2.6.9, the formula for the wave 
velocity, c:

(3.3.1)

In Chapter 2 this equation was derived for a wide, rectangular channel, 
giving K=5/3. For a natural channel, K, may vary between 1.3 and 1.6. 

The algorithm is based on tracking points in the hydrograph of the wave. 
For each point, the water depth and water velocity is computed, based 
on Manning’s formula and the continuity equation. Then Eq. 3.3.1 is 
used to compute the wave speed. The time to travel a given distance to 
a downstream cross-section is then computed for each point in the 
hydrograph. An example is given in Table 3.3.1, taken from a spread-
sheet. The spreadsheet is computed from left to right. 

Table 3.3.1 Analytical computation of kinematic wave

The table is computed for a wide channel with width of 500 meters, a 
slope of 1/200 and a Manning-Stricklers value of 60. Mannings equation 
and the continuity equations are two equations that are used to compute 
the two parameters U and y. 

The result is in the two columns to the right in the spreadsheet, 5000 and 
10 000 meters downstream. The time, T, in these columns are computed 
by the following equation:

(3.3.2)

The use of the Mannings formula in the table is derived using the conti-
nuity equation to eliminate the water depth: 

ge 
as 
ata 

)

Velocity from 
Manning’s 

formula (m/s)

Depth, from 
continuity 
equation 

(m)

Wave speed, 
c, From Eq. 
3.3.1 (m/s)

Time for 
X=5000 
meters 
(min) 

Time for 
X=10000 

meters 
(min)

2.30 0.58 3.83 21.8 43.5

3.03 0.883 5.05 26.5 43.0

3.56 1.126 5.94 34.0 48.1

4.00 1.330 6.66 42.5 55.0

3.56 1.12 5.94 54.0 68.1

3.03 0.88 5.05 66.5 83.0

2.30 0.58 3.83 81.8 103.5

c KU=

T T0
X
c
---+=
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      or   (3.3.3)

Solution by differentials

There exist more involved methods to compute the kinematic wave. The 
continuity equation and a formula for the normal depth in a reach is then 
used. Note that Eq. 3.2.4 for the kinematic wave gives that the energy 
slope is equal to the bed slope. This means the flow is uniform, and a 
friction formula can be used, for example Manning’s formula. If the veloc-
ity in this formula is replaced by Q/A, and the definition of the hydraulic 
radius is used, the following derivation can be made:

(3.3.4)

Solved with respect to A:

(3.3.5)

The equation can be differentiated with respect to time, assuming that P, 
I0 and M are constants:

(3.3.6)

The continuity equation can be used:

(3.3.7)

Combining Eq. 3.3.6 and Eq. 3.3.7 enables the elimination of A and 
gives an equation where only Q is unknown:

(3.3.8)

Assuming the term in the bracket is constant, the equation can be solved 
using first-order differences for time and second-order differences for 
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space. A notation of two subscripts is used, where the first subscript, i, 
denotes the space direction and the second, j, the time:

(3.3.9)

(3.3.10)

Using these two equations we can transform Eq. 3.3.8 to:

     (3.3.11)

Index i is used for the space dimension and j for the time. Given an initial 
situation, Eq. 3.3.11 can be solved with respect to Qi,j+1 to give a formula 
for the discharge at a node as a function of the discharges at the nodes 
in the previous time step:

(3.3.12)

The equation can be solved numerically using a spreadsheet, if there 
exist simple formulas for P as a function of the discharge. One axis in the 
spreadsheet is the distance x, and the other axis is the time.

Example: Solution by differentials. 

Compute the water discharge at cross-section 5 at time step 11 minutes, 
when water discharge at time step 10 minutes are given as: 

Cross-section 4: Q=203 m3/s
Cross-section 5: Q=195 m3/s
Cross-section 6: Q=188 m3/s. 

Assume a time step of one minute, and that the cross-sections are 200 
meters apart. The bed slope is 1:400 and the Manning-Stricklers coeffi-
cient is 66. The wetted perimeter is 54 meters at cross-section 5 for this 
discharge. 

Solution: We give the numbers to equation 3.3.12: 
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Figure 3.3.1. Rating curve
during passing of a flood
wave. The kinematic wave
model gives the same val-
ues for the rising and fallin
of the hydrograph. The 
observations give different 
stage/discharge observa-
tions in the rising and fallin
of the hydrograph. 

Implicit/Explicit method
Discussion

One simplification for the kinematic wave is assuming uniform flow on a 
reach. The water level is then a unique function of the water discharge. A 
rating curve showing the water levels at a gauging station during the 
passing of a flood, will get different values for the rising and the falling 
limb of the hydrograph. This is shown in Fig. 3.3.1. However, because of 
the simplifications, the kinematic wave method is not able to model this 
effect.

Another point to note is that the differential solution method introduces 
some errors, causing the maximum discharge for a wave to be damp-
ened. This is not observed in the quasi-analytical solution method. How-
ever, it is noticed in field data. The damping of a real flood wave must not 
be confused with the damping introduced by inaccuracies in the numeri-
cal algorithm.

3.4 Unsteady flow - Saint-Venant equations

Solving the full Saint-Venant equations is done for dam-break modelling 
and other flood problems where there is a rapid change in the water 
depth over time, and the water discharge is significantly higher than the 
available calibration data. 

The approach to solving the Saint-Venant equations is more involved 
than solving the kinematic wave equation. There exist a number of differ-
ent solution methods, which can be divided in two groups:

- Explicit methods
- Implicit methods

When the differences in space are to be computed, the question is if the 
values in time step j or time step j+1 should be used. If the values in time 
step j is used, an explicit solution is given. If the values at time step j+1 
are used, an implicit solution is given. An implicit solution is more stable 
than an explicit solution, and longer time step can be used. An explicit 
solution is simpler to program.

The explicit computational molecule is seen in Fig. 3.4.1.

Often, the gradients are computed as a combination of values at time 
step j and time step j-1. A weighting factor, θ, is then used, where the 
final solution is θ times the gradients at time step j, plus (1-θ) times the 
gradients at time step j-1. This means if θ is 1, an implicit solution is 
given, and if θ is 0 the solution is explicit. If θ is between 0 and 1, the val-
ues at both time steps will be used. The method is then still said to be 
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Figure 3.4.1 Nodes for 
computation mole-
cule. The upper figure 
shows an explicit mole-
cule and the lower figure 
shows an implicit mole-
cule. For the explicit 
molecule, the value at 
node (i,j) is computed 
from nodes at the previ-
ous time step, j-1. The i 
nodes in the space 
direction is the different 
cross-sections.
implicit. The DAMBRK program uses a default value of 0.6 for θ, equiva-
lent of using 60 % of the value at time step j and 40 % of the value at 
time step j-1. 

Both the explicit and the implicit method are described in the following.
 

Explicit method

The explicit solution is easier to solve than the implicit method. This can 
be seen from Fig. 3.4.1. The initial water discharge in the river is known, 
so the first computation starts with the next time step. For each cross-
section, i, the discharge can be computed from the discharges at the 
previous time step. This is repeated for all cross-sections, and the dis-
charges at the time step j is computed by one sweep. Then the computa-
tion proceeds to the next time step. 

What is needed is a formula for the water discharge at time step j as a 
function of the discharges at time step j-1. This is obtained by discretiz-
ing Eq. 3.2.1 and Eq. 3.2.2. For a rectangular channel with depth y and 
width B, the continuity equation, Eq. 3.2.1, becomes

(3.4.1)

The B’s are eliminated and y and U is taken to be the value at the previ-
ous time step. The following differentials are used: 

(3.4.2)
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Δ
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yi j, yi j –,=

The source code in C for 
the explicit solution of 
Saint-Venant equations is 
given in Appendix I.
(3.4.3)

(3.4.4)

(3.4.5)

The equation is solved with respect to the water depth at time step j: 

(3.4.6)

In a similar way, the Saint-Venant equation itself (Eq. 3.2.2) can be dis-
cretized as:

(3.4.7)

where

 (3.4.8)

is taken from Mannings equation. 
Eq. 3.4.6 can be solved with respect to Ui,j:

(3.4.9)

The explicit procedure then becomes:

1. Guess starting values of U and y along the channel. 
2. Determine inflow values of U and y
3. Repeat for each time step
   4. Repeat for each cross-section of a time
      5. Compute the water level, y, from Eq. 3.4.6
      6. Compute If from Eq. 3.4.8
      7. Compute the water velocity, U, from Eq. 3.4.9
    End of repetition 4
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End of repetition 3

The explicit procedure will become unstable if the time step is chosen 
too large. The Courant criteria says the time step should be smaller than 
what would be required to make a water particle pass from one cross-
section to another:

 (3.4.10)

This criteria is only theoretical. Sometimes it is necessary to use an even 
smaller time step. Fig. 3.4.2 shows a numerical simulation of antidunes 
(described in more details in Chapter 9). The upper figure shows the cor-
rect result with a time step of 0.5 milliseconds. The lower figure shows 
the result with a time step of 1 milliseconds. 

Δt
Δx

U c+( )
---------------------<

Figure 3.4.2. Antidune modelling. Correct result in the upper figure, and 
instabilites show up in the lower figure. The lower figure has twice as 
large time step as the upper figure.
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Figure 3.4.2 Example of 
a flood wave routed 
downstream a channel 
using the full Saint-
Venant equations and an 
explicit solver. The chan-
nel has a slope of 1:200, 
and a Manning’s M value 
of 30 was used. The verti-
cal axis is the water dis-
charge, and the horizontal 
axis is the time in sec-
onds. The different curves 
show the hydrograph at 0, 
1250, 2500 and 5000 
meters downstream. The 
initial hydrograph has the 
triangular shape. A time 
step of 3 seconds was 
used. The source code 
written in C to generate 
this figure is given in 
Appendix I.
Control volume approach

The explicit procedure is still fairly unstable in the form given above. An 
improvement in stability can be obtained by considering a control volume 
approach when discretizing the continuity equation:

Fig. 3.4.3 shows a longitudinal part of the river, with three cross-sections: 
i-1, i and i+1. It also shows two water surfaces. One surface is at time 
step j-1, and the other is at time step j. The purpose of the algorithm is to 
compute the water level at section i, for time step j. This is done on the 
basis of the fluxes in and out of the volume upstream of i:

Inflow: I= Ui-1 * yi-1    or 

(3.4.11)

Outflow: O = Ui * yi     or

    (3.4.12)

The overbar denotes average values over the time step.

i      i+1 i-1

j-1

j

Ui-1
Ui

Fig. 3.4.3. Figure for 
control volume 
approach to discreti-
zation of continuity 
equation

Δx Δx

I
Ui 1 j 1–,– Ui 1 j,–+( )

2
--------------------------------------------------

yi 1 j 1–,– yi 1 j,–+( )
2

----------------------------------------------=

O
Ui j, Ui j 1–,+( )

2
------------------------------------

yi j, yi j 1–,+( )
2

--------------------------------- Ui

yi j, yi j 1–,+( )
2

---------------------------------= =
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Figure 3.4.4. Discretiza-
tion of terms between 
cross-section i and i-1, 
computing for time step 
j. Time step j-1 is the pre-
vious time step. This is 
called a four-point differ-
ence scheme.
The difference between the inflow and outflow is equal to the volume of 
the water between the surfaces at time j and j-1, during one time step. 
This gives:

(3.4.13)

or 

(3.4.14)

This equation can be used to compute the water level at section i, start-
ing from the upstream end going downstream. Then the values of I and 
Ui are known. This can be done after computing the velocities by solving 
the Saint-Venant equation. This procedure is implemented in the source 
code given in Appendix I

Implicit method

The procedure starts with discretization of each differential terms of Eq. 
3.2.1 and Eq. 3.2.2 in space and time according to the figure below:

The choice of using the water discharge instead of the velocity as a vari-
able has been reported to give better stability.

The equations are transformed so that all the terms only have the two 
independent variables, Q and y. The rating curve where the cross-sec-
tional area is given as a function of the water depth (Fig. 3.2.2) is also 
used. 

After multiplication with A, the first term in Eq. 3.2.2 becomes:

(3.4.15)

Using the chain rule and the continuity equation, the second term 
becomes:
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y θyj 1 θ–( )yj 1–+=
(3.4.16)

Using finite differences, the term is transformed to:

(3.4.17)

Note the weighting factor, θ, described below Fig. 3.4.1. The third term 
becomes:

      (3.4.18)

The friction loss term is discretized by solving the Manning’s equation:

(3.4.19)

The variables are here averaged between section i and i-1.

The same procedure is used for the continuity equation (3.2.1). The tran-
sient term becomes:

(3.4.20)

The second term:

(3.4.21)

Additionally, there may be lateral inflow/outflow.

Evaluation of the equations

After the terms in the continuity and momentum equations are replaced 
by Eq. 3.4.18 and 3.4.19, the two equations will be in the form:

 

(3.4.22)

 

(3.4.23)
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where A, B, C, D and E are functions of constants and variables at the 
previous time step and the indexes c and m denote the continuity and 
momentum equation, respectively. Note, all variables at time step j-1 are 
known. The variables at time step j are unknown. The momentum equa-
tion and the continuity equation are applied to all reaches in the river 
between the cross-sections. Given boundary conditions, there are the 
same number of unknown as equations. 

There are a number of methods for solving the equations. The two main 
groups are direct methods and iterative methods. In direct methods, the 
equations are set up in a matrix, which is inverted to get the solution 
(Brunner, 2010). In iterative methods, guesses are made for the varia-
bles, and Equations 3.4.7 and 3.4.8 are modified to get formulas for 
improvement of the guessed values. 

Stability problems

or all values of the time step. However, a mixture of an explicit and a fully 
implicit solution as described in Fig. 3.4.1 will contain some elements an 
explicit solution and be unstable for large time steps. It may be possible 
to get a stable solution for Cournant numbers above 1, but seldom above 
10. Then the explicit solution may still be preferred above the added 
complexity of an implicit solution. 

As recommended by Brunner (2010), the user should always recompute 
a case with different time steps and distances bewtween the cross-sec-
tions, to assess the influence of these parameters. 

Experience with solving the equations shows that convergence prob-
lems occur where there is supercritical flow. Many computer programs 
therefore implement special algorithms to deal with this situation. Some 
are more successful than others. If the algorithm in a given program 
fails, it is possible to avoid the problem by modifying the friction factor, M, 
so that only subcritical flow is present in the problematic area. The flood 
wave will then get a slower translation speed as the velocities are 
reduced. This must be taken into consideration when evaluating the 
results.

Boundary conditions

The upstream and downstream cross-section will need boundary condi-
tions. There are several options: 

1. User-specified values

This could typically be results from a dam break computation, which 
gives the water discharge as a function of time at the upstream bound-
ary. Or if the downstream value is located in a lake or in the ocean, then 
the water elevation there is known.

2. A rating curve

This can be used if for example a weir is present at the downstream 
boundary, giving a unique relationship between discharge and water 
level.

3. Uniform flow approximation

The Mannings formula can be used to find the discharge if uniform flow 
is assumed. 

4. Zero gradient boundary condition. 
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This is typically used at the downstream boundary. The depth and/or dis-
charge are assumed to be the same at the downstream boundary cross-
section as the second most downstream cross-section. 

The choise of boundary conditions must be made based on the available 
data and the hydraulic conditions in the river. 

3.5 Hydrologic routing

A simplified river routing method is the Muskingum algorithm. It is 
derived from the water continuity equation and some assumptions about 
the volume of the water in the river:

The volume, V0, of water in the reach is assumed to be proportional to 

the steady water discharge, Qo, flowing out of the reach:

(3.5.1)

where K is a proportionality coefficient, with units [sec]. 

For unsteady flow, the water discharge into the reach is not always 
equal to the discharge out of the reach. If the inflow is denoted Qi, the 
water continuity defect is assumed to take up a volume equal to: 

(3.5.2)

X is another geometrical proportionality coefficient (dimensionless). 

The total volume of water in the reach is therefore: V=V0+VD 

(3.5.3)

The change in water volume in a reach between one time step j, and the 
next time step j+1 becomes:

(3.5.4)

From the continuity equation, the volume change can also be written:

(3.5.5)

Combining the two equations and solving with respect to Qo
j+1, the fol-

lowing equation is obtained:

(3.5.6)

Expressions for the C’s as functions of X, K and Δt are:
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The parameters in the 
Muskingum method are 
based on observed dis-
charges. If floods higher 
than the observed values 
are to be computed, the 
coefficients may not be cor-
rect. The Muskingum 
method can then not be 
used. 

HEC-RAS is freeware, and 
can be downloaded from the 
Internet. It is much used by 
Norwegian consulting com-
panies and water authori-
ties. 
(3.5.7)

(3.5.8)

(3.5.9)

By combining Eq. 3.5.4 and 3.5.5, the following expression for K is 
obtained:

(3.5.10)

The Muskingum method determines the C values from observed 
hydrographs. The numerator and denominator in Eq. 3.5.10 is computed 
and plotted for each time interval for different values of X. The value giv-
ing the straightest line is chosen, and K is then the slope of this line. 
From these values of K and X, Eq. 3.5.7-9 are used to compute C1-3. 
When the C’s are given, the water discharge can be determined from Eq. 
3.5.6. 

3.6 HEC-RAS

HEC is an abbreviation for Hydrologic Engineering Center. RAS is an 
abbreviation for River Analysis System. HEC is a part of US Army Corps 
of Engineers. Over the years, the organization has made several compu-
ter programs for water flow problems, named HEC1, HEC2 etc. HEC2 
computed the water surface profile for a steady water flow in a natural 
river in one dimension. The solution procedure followed the theory in 
Chapter 3.2. 

The original HEC2 program did not have a user interface. It read an 
ASCII input file with all the necessary information about water discharge, 
friction factors, geometry etc. The result was an output file with the com-
puted water levels. Later, a graphic user interface for the program was 
made, with interactive input of data and visualization of results. This ver-
sion is called HEC-RAS. The most recent version of HEC-RAS includes 
algorithms for computing unsteady flow, including mixed flow regime 
between supercritical and subcritical flow. It also has a dam break analy-
sis module, and connection to GIS programs. Version 4 came out in 
2008 and has sediment transport with movable bed and water quality 
computations. A 2D version came in 2016, and very fast became popular 
in Norway.

3.7 Commercial software

Because the initial HEC2 program was limited in functionality and graph-
ics, there was a period of time in the 1990’s where there were a market 
for commercial software for hydraulic engineering. The purpose was 
often analysis of flooding and dam-breaks. Several commercial pro-
grams were developed, and some are briefly described below.
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MIKE 11 is used by Norwe-
gian consulting companies 
and The Norwegian Water 
Resources and Energy 
Directorate for flood zone 
mapping.

ISIS is the most used tool by 
consulting companies in the 
UK for river flow computati-
tons. 
DAMBRK is made by the US National Weather Service. It consist of two 
parts: 

- A program for computing the outflow hydrograph from a reservoir
  where the dam is breaking
- Routing of the hydrograph downstream, by solving the Saint-Venant
  equations.

The program is in principle freeware, and the source code is publicly 
available. The original version did not have a user interface, but com-
mercial companies have made user interfaces and these are sold 
together with the program. An example is BOSS DAMBRK.

There also exist two programs for separate computations of the dam 
break hydrograph and the flood routing, made by the same organization. 
The program computing the hydrograph is called BREACH. The pro-
gram computing only the routing of the flood wave is called DWOPPER.

MIKE11

MIKE 11 is made by the Danish Hydraulic Institute. It is a one-dimen-
sional program with both steady state water surface profile computation 
and solution of the full Saint-Venant equations. The program has a 
graphical user interface, and program includes connections with GIS 
systems. MIKE 11 has a number of different add-on modules, computing 
for example:

- rainfall/runoff
- water quality
- sediment transport
- groundwater

The modules makes MIKE 11 very well suited for a solving a number of 
different hydraulic river problems.

ISIS

ISIS is made by Hydraulic Research Wallingford, in the UK. It is similar in 
functionality to MIKE11, with a graphical user interface and computa-
tional modules for one-dimensional steady and unsteady flow. It also has 
a number of add-on modules. 

3.8 Problems

Problem 1. Coefficients

Derive formulas for the coefficients C1, C2, and C3 in Eqs. 3.5.7-9. This 
is done by combining Eq. 3.5.4 and 3.5.5, eliminating the volumes V, and 
solving with respect to Qo

t+1, The resulting equation is compared with 
Eq. 3.5.6, giving the coefficients. 

Problem 2. Flood wave

Water is released from a dam, with the outflow hydrograph given in the 
figure below. The river downstream is 50 m wide, and has stones with 
d90 of 0.2 meter. The river slope is 1:300. A town is located 2 km down-
stream of the dam. When will the water start to rise in the town? And 
when will the peak of the flood wave reach the town?  
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Use a computer program solving the Saint-Venant equation to compute 
the maximum water discharge at the town.

Time (min)

Q (m3/s)

          10             70  180

60

20
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Numerical algorithms for 
solving the water velocity 
equations in 3D can be diffi-
cult to learn. It is sometimes 
easier to learn the algo-
rithms when looking at dis-
persion of a pollutant than 
computing the water veloc-
ity. This is the reason why 
the dispersion processes 
are described before the 
computation of the water 
flow.
4. Dispersion of pollutants

4.1 Introduction

Dispersion is a combination 
of the two processes: con-
vection and diffusion. Con-
vection is pollutant transport 
by the time-averaged water 
velocity. This is relatively 
straightforward to compute. 
For our purposes, diffusion 
is caused by turbulence and 
velocity gradients, which are 
more complicated. 

The most common method 
of modelling diffusion is by 
use of a turbulent diffusion 
coefficient, Γ, defined as:

        (4.1.1)

F is the flux of a pollutant 
with concentration c, pass-
ing through an area A, and x 
is the direction of the flux 
transport.

4.2 Simple formulas for the diffusion coefficient

The diffusion coefficient, Γ, for diffusion of a toxic substance, can be set 
equal to the eddy-viscosity, νT, of the water. The relationship between 
the variables are given by the following formula:

(4.2.1)

Sc is the Schmidt number. This has been found to be in the range of 0.5-
1.0, but more extreme values have been used. In the following, we 
assume a value of 1.0, meaning the turbulent diffusion coefficient is 
equal to the eddy-viscosity. 

Classical hydraulics give a number of empirical and semi-analytical for-
mulas for the eddy-viscosity in rivers or lakes. For a river, the eddy-vis-
cosity, νT, is used in the definition of the shear stress in a fluid:

(4.2.2)

The equation can be solved with respect to νT:

The picture shows the confluence of two 
small rivers in Costa Rica with different 
water quality. The branch on the left part of 
the picture comes from an area with vol-
canic activity. (Photo: N. Olsen)
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(4.2.3)

For a wide rectangular channel, Schlichting’s wall laws (Eq. 2.1.2) gives 
the variation of the velocity with the depth. The vertical velocity gradient 
can be obtained by derivation of Eq. 2.1.2, with respect to the distance 
above the bed, y:

(4.2.4)

For a wide, rectangular channel, the shear stress increases linearly from 
the surface to the bed:

(4.2.5)

The water depth is denoted h. Using the definition of the shear velocity, 
the equation can be rewritten:

(4.2.6)

Inserting Eq. 4.2.4 and Eq. 4.2.6 into Eq. 4.2.3:

(4.2.7)

The average value over the depth is obtained by integrating Eq. 4.2.7 
over the depth:

(4.2.8)

Equation 4.2.8 is derived for an idealized case, with a wide straight 
channel with rectangular cross-section. Naas (1977) measured the 
eddy-viscosity in a number of natural rivers, and suggested the following 
formula instead:

(4.2.9)

Note that this formula is based on the vertical velocity gradients, so this 
gives the eddy-viscosity in the vertical direction.

The shear stress on a lake will also introduce turbulence in the water. A 
similar approach can be used as for a river, but now the shear stress is 
acting on the water surface instead of the bed. The result is a formula 
similar to Eq. 4.2.8 and 4.2.9, but a different empirical coefficient may be 
used.
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c

  spill                x=1

Figure 4.3.1 Time-series o
4.3 One-dimensional dispersion

A typical example of a one-dimensional dispersion problem is pollution 
from a point-source into a river where the vertical and lateral mixing is 
large. Typical concentration profiles at several points in the river down-
stream of the spill is given in Fig. 4.3.1:

The figure shows the two main processes: 

- Convective movement of the point of maximum concentration
- Diffusion of the spill, with reduction of the maximum concentration

The transport can be described by a convection-diffusion equation for 
the pollutant concentration, c:

(4.3.1)

The problem is to find the correct value of the longitudinal diffusion coef-
ficient, Γ. The coefficient is not a function of small-scale turbulent proc-
esses. Instead, mixing in the longitudinal direction is often caused by 
convective movements due to lateral velocity gradients. The diffusion 
coefficient for a one-dimensional model of a river will be much larger 
than the small-scale turbulent diffusion used in multi-dimensional mod-
els. 

Some researchers have developed empirical formulas for the longitudi-
nal dispersion coefficient:

McQuivey and Keefer (1974): 

(4.3.2)

Fisher et. al. (1979)

(4.3.3)
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Figure 4.4.1 Velocity pro-
files at the core of a jet 
outlet. The entrance profile 
is denoted A, the core 
region ends at profile C. 
Profile B has uniform distri-
bution at the core, but 
curved distribution at the 
edge. Profile D has reduced 
maximum velocity, as it is 
located after the core 
region.
Ahmad et al (1999) 

(4.3.4)

Q is the water discharge in the river, with slope I, width B, hydraulic 
radius, R and depth H. U is the water velocity and u* is the shear velocity. 
The discharge pr. unit width is denoted q. 

The convection-diffusion equation can be solved analytically, assuming 
constant values of velocity and diffusion coefficient, giving (Chapra, 
1997, p.182):

(4.3.5)

The initial concentration is denoted c0, and the length of the spill in the 
river is denoted L. 

Eq. 4.3.5 is derived based on simplifications that reduce the accuracy of 
the result. The equation may give a rough estimate of the concentration, 
but to get better accuracy it is necessary to solve the convection-diffu-
sion equation numerically.

Looking at measurements of pollution concentration in a river, the pro-
files in Fig. 4.3.1 have an additional feature: a prolonged tail. It is caused 
by storage of pollution in recirculation zones and dead waters along the 
river. This effect is difficult to take into account using one-dimensional 
models. Instead, it is possible to model the river using a three-dimen-
sional model, where the water flow field is modelled, including recircula-
tion zones. This approach also have the advantage that the uncertainty 
with the longitudinal diffusion coefficient is eliminated. It is computed as 
a part of the solution of the equations. Research is ongoing in this area.

4.4 Jets and plumes

Jets and plumes are water entering a reservoir or a lake, for example 
from a river or a wastewater outlet. For an idealized case, there exist for-
mulas for the dispersion of jets and plumes. The formulas can be derived 
analytically based on the momentum equation, but empirical coefficients 
are required when computing dispersion because of turbulence.

Close to the outlet, the momentum of the water will be a dominating 
force determining the flow field. This is then called a jet. Fig. 4.4.1 shows 
a jet close to the outlet:
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A flow situation dominated 
by the momentum of the 
inflowing water is often 
called a jet. If the flow situa-
tion is dominated by the 
density difference between 
the inflowing and receiving 
water, this is often called a 
plume. 
Assuming a uniform velocity profile at the outlet, the jet will have a core 
where the velocity distribution changes. The length of the core is approx-
imately 6 times the diameter of the outlet. In the core, the maximum 
velocity is constant. The water from the jet is mixed with the surrounding 
water, reducing the velocity in this area. The reduction of the velocity will 
finally take place also at the center of the jet. This point forms the end of 
the core. 

After the core, the jet may moves in various directions, depending on:

- The geometry around the plume
- The density difference between the inflowing and the surrounding water
- The density stratification in the surrounding water
- The velocity field in the surrounding water
- The turbulence in the surrounding water.

If the velocity of the surrounding water is very strong, this may also affect 
the jet in the core region. 

For an idealized case, it is possible to derive formulas for the velocity 
and effective discharge after the outlet. Assuming the receiving water 
has no velocity, turbulence or density stratification, and its density is the 
same as the water in the jet, the momentum of the water stays the same 
in a cross-section of the jet. It is also assumed the jet will not interact 
with any geometry. The momentum equation, together with experiments 
then give the following equations for a jet from a circular pipe (Carstens, 
1997):

(4.4.1)

(4.4.2)

(4.4.3)

The velocity is denoted u, r is the distance from the centerline of the 
plume, x is the distance from the pipe outlet, d0 is the diameter of the 
pipe and Q0 is the water discharge out of the pipe. Because the sur-
rounding water will be mixed into the plume, the total water discharge, Q, 
in the jet will increase with the distance from the outlet. 

The formulas are empirical. Fischer et al (1979) came up with slightly dif-
ferent coefficients: 6.2 instead of 6.4 in Eq. 4.4.2, and 0.28 instead of 
0.42 in Eq. 4.4.3.

If the receiving water does not have the same density as the water from 
the pipe, the plume will rise or sink. A densimetric Froude number, Fr’, is 
often used to derive formulas for the plume.
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Figure 4.4.2. A plume 
rises from a fire in the 
heim. (Photo: N. Olsen
(4.4.4)

It is assumed that plume water density, ρ0, has a lower value than the 
recipient water density, ρres. The formulas below are given by Rouse et. 
al. (1952) from experiments:

(4.4.5)

(4.4.6)

(4.4.7)

It is assumed the pipe releases the water in the vertical direction. 

Detailed derivations of the formulas, together with equations for more jet/
plume cases are given by Fisher et. al. (1979).

4.5 Problems

Problem 1. Dispersion in a river

Two thousand litres of a toxic chemical is spilled from a factory into a 
river during ten minutes. The river has a water discharge of 20 m3/s, an 
average depth of 2 meters, and average width of 30 meters and a slope 
of 1:63. Ten kilometer downstream of the factory is a city. Compute the 
concentration of the chemical in the river at the city as a function of time.
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Problem 2. Dispersion of a plume

A plume rises from a hydropower plant outlet into the sea. The sea water 
has a salinity of 3 %, and a density of 1023 kg/m3. The water discharge 
is 50 m3/s from a tunnel with diameter 3 meters. The water from the tun-
nel has a density of 1000 kg/m3. The lake is 30 meters deep at the outlet 
point. What is the velocity of the water 20 meters right above the outlet? 
Assume no initial water currents or vertical stratification. 

What will happen if there are currents in the lake?
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Grid classifications

Fig. 5.1.2. Grid orthogo-
nality

Fig. 5.1.1. Grid shapes

Pronounciation of the 
Greek letters:

ξ : ksi
ψ:  psi
ζ:  zeta
5. Dispersion modelling in 2D and 3D

Dispersion modelling in 2D or 3D is conducted using a science called 
computational fluid dynamics, or CFD. This chapter gives an introduction 
to CFD, applied to modelling dispersion of pollutants.

5.1 Grids

A basic concept of CFD is to divide the fluid geometry into elements or 
cells, and then solve an equation for each cell. In the following text, the 
word cell will be used instead of element, to avoid confusion with the 
finite element method. The algorithms described in the following chap-
ters are based on the finite volume method.

Grids can be classified according to several characteristics:

shape
orthogonality
structure
blocks
grid movements
nesting
outblocking

The shape of the cells is usually triangular or quadrilateral: 

The orthogonality of the grid is determined by the angle between cross-
ing grid lines. If the angle is 90 degrees, the grid is orthogonal. If it is dif-
ferent from 90 degrees, the grid is non-orthogonal. 

For non-orthogonal grids, a non-orthogonal coordinate system is often 
used to derive terms in the equations. The coordinates then follow the 
grid lines of a structured grid. The three non-orthogonal coordinate lines 
are often called ξ,ψ,ζ, corresponding to x,y and z in the orthogonal coor-
dinate system. Fig. 5.1.3 shows the two systems in 2D. Additionally, the 
third direction will be z in the cartesian system and ζ in the computational 
domain.

           Triangular, quadrilateral and polyhedral shapes 

Orthogonal grid Non-orthogonal grid
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Figure 5.1.3 Body-fitted 
coordinate system. The 
two coordinate systems 
are shown in two dimen-
sions, where some values 
of ξ and ψ are given in 
brackets

Grid structure

     S

Figure 5.1.4 Grid struc-
ture

Adaptive grid
The directions along the computational domain are often called (ξ,ψ) in 
2D as shown in the figure above, or (ξ,ψ,ζ) in 3D, where the last index is 
the vertical direction. In the computational domain, the distance between 
the grid lines are often set to unity, so it is easy to calculate gradients of 
variables. It means all δξ will be unity.

An important definition is the notation of the variables at a cell. Instead of 
using x,y and z directions, the non-orthogonal cell now uses the direc-
tions north, south, east, west, bottom and top. Another definition is to 
use indexes, as in tensor notation. Then direction 1 is east-west, direc-
tion 2 is north-south and direction 3 is vertical. Using tensor notation, 
(ξ,ψ,ζ) can also be written (ξ1,ξ2,ξ3).

Grids can be structured or unstructured. In the last century, a structured 
grid was often used in finite volume methods and an unstructured grid 
was used in finite element methods. However, modern finite volume 
methods also uses unstructured grids. The figure below shows a struc-
tured and an unstructured grid. In a structured grid it is possible to make 
a two-dimensional array indexing the grid cells. If this is not possible, the 
grid is unstructured.

Almost all grids using triangular cells are unstructured. 

It is possible to connect several structured grids. Each grid is then called 
a block, and the result is called a multi-block grid.

The grid may also move during the computations. A grid that moves 
according to the solution of the equations is called an adaptive grid. 

ξ

ψ

y

x

(1,1)                  (2,1)                   (3,1)

(3,3)

(2,4)

(4,4)

 (4,1)

Level 2

tructured grid Unstructured grid
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Grid qualities

Figure 5.1.5  Expansion/asp
Typical examples are vertical movements due to changes in water lev-
els, or changes in bed levels due to erosion or sedimentation. The grid 
may also move laterally, for example modelling a meandering river. 
Examples are given in Chapter 9. All these movements are due to 
changes in the geometry of the computational domain. Grid movements 
can also be internal. Often, a higher grid density is wanted in large gradi-
ents, and algorithms have successfully been used to change the internal 
grid structure to change the cell sizes according to for example velocity 
gradients. 

High gradients may also necessitate the use of a nested grid. This 
means that a grid with small cells are located inside a coarser grid. A 
typical example is computation of pollutants from a point source in a 
lake. The lake itself is modelled with a coarse grid, while the concentra-
tion around the point source is modelled with a finer grid, nested inside 
the coarse grid. Another example is local scour, where a fine grid is 
made around the bridge pier and a coarser grid is made of the river 
(Baranya et al, 2014)

Outblocking is a procedure where cells in a structured grid are made 
inactive. This makes it easier to generate structured grids in a complex 
geometry. 

Grid Qualities

The accuracy and convergence of a finite volume calculation depends 
on the quality of the grid. Three grid characteristics are important:

- non-orthogonality
- aspect ratio
- expansion ratio

The non-orthogonality of the grid line intersections is the deviation from 
90 degrees. If the grid line intersection is below 45 degrees or over 135 
degrees, the grid is said to be very non-orthogonal. This is a situation 
one should avoid. Low non-orthogonality of the grid leads to more rapid 
convergence, and in some cases better accuracy.

The aspect ratio and expansion ratio is described in the figure below:

The figure shows two grid cells, A and B. The length of the cells are ΔxA 
and ΔxB. 

The expansion ratio of the grid at these cells is ΔxA/ΔxB. 

The aspect ratio of the grid at cell A is ΔxA/ΔyA. 

The expansion ratio and the aspect ratio of a grid should not be too 
great, in order to avoid convergence problems and inaccuracies. Aspect 
ratios of 2-3 should not be a problem if the flow direction is parallel to the 
longest side of the cell. Experience shows that aspect ratios of 10-50 will 
give extremely slow convergence for water flow calculations. Expansion 
ratios under 1.2 will not pose problems for the solution. Experience also 
shows that expansion ratios of around 10 can give very unphysical 

A B

  ΔxA ΔxΒ

ΔyAect ratio definition: 
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Fig. 5.1.6. Grid gene
transfinite interpola

Fig. 5.1.7. Grid mad
tic grid generation.
results for the water flow calculation. 

Grid generation

Some kind of geographical information is required to make a grid of a 
natural river or lake. Often a map can be used. The first step is usually to 
determine the points at the edges of the grid. Then the internal grid inter-
sections are made. 

Two of the most commonly used methods to generate internal points in a 
structured grid are called Transfinite interpolation and Elliptic grid gener-
ation. These are described in the following.

Transfinite interpolation

In a transfinite interpolation, the grid lines on two opposing edges are 
connected with straight lines. An example is given in Fig. 5.1.6. The 
method is well suited for modelling rivers, as the straight lines can be 
cross-sections. Note that the straight lines are only generated in one 
direction. For the right figure in Fig. 5.1.6, the lines in the longitudinal 
direction are not straight.

Elliptic grid generation

Some times a smoother grid is required, than the result of the Transfinite 
interpolation. The elliptic grid generation solves a differential equation for 
the location of the grid intersections:

 

The grid given in Fig. 5.1.7 is made by this method.

rated with 
tion.

∇2ξi 0=

e by an ellip-
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              Discretization is:

cn

ce

cs

cpcw

Figure 5.2.1 Discretization 
molecule. Computation of con-
centration, c, in the center cell, 
p, as a function of the concentra-
tion in the neighbouring cells n, 
s, e and w.
5.2 Discretization methods

The discretization described here is by the control volume method. 

Steady state dispersion is governed by the convection-diffusion equation 
for the concentration, c, of the pollutant:

(5.2.1)

The left side of the equation is the convective term, and the right side of 
the equation is the diffusive term. 

The main point of the discretization is:

To transform the partial differential equation into a new equation where 
the variable in one cell is a function of the variable in the neighbour cells

The new function can be thought of as a weighted average of the con-
centration in the neighbouring cells. For a two-dimensional situation, the 
following notation is used, according to directions north, south, east and 
west:

ae : weighting factor for cell e
aw : weighting factor for cell w
an : weighting factor for cell n
as : weighting factor for cell s
ap = ae+aw+an+as

The formula becomes:

(5.2.2)

The weighting factors for the neighbouring cells ae, aw, an and as are 
often denoted anb

What we want to obtain are formulas for anb. 

In a three-dimensional computation, the same principles are involved. 
But two more neighbouring cells are added: t (top) and b (bottom), 
resulting in six neighbour cells. The simple extension from 2D to 3D is 
one of the main advantages of the finite volume method.

There are a number of different discretization methods available for the 
control-volume approach. The difference is in how the concentration on 
a cell surface is calculated. Some methods are described in the follow-
ing. 

Note that the methods are based on the physics of the dispersion and 
flow processes. They are not mathematically based, or derived from the 
convection-diffusion equation (5.2.1).

Ui
∂c
∂xi
------- ∂

∂xi
------- Γ ∂c

∂xi
------- 

 =

cp

awcw aece ancn ascs+ + +

ap
---------------------------------------------------------------------=
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Development of CFD 
algorithms was initially 
done in aeronautics. 
The fluid was air, and 
the methods were then 
called upwind instead of 
upstream. Both expres-
sions are used, mean-
ing the same.

Figure 5.3.1 Fluxes 
through the walls of 
the center cell in a 
computational mole-
cule. The cells have a 
width of dx and a height 
of dy. Note, the diffu-
sion coefficient and the 
velocities are given on 
the boundary between 
the cells. The concen-
trations are computed in 
the centre of each cell. 
Also note that this is a 
two-dimensional situa-
tion. The area of a cell 
surface is therefore 
equal to dx or dy, multi-
plied with a unit depth in 
the third dimension. 
5.3 The First-Order Upstream Scheme

For a non-staggered grid, the values of the variables are given in the 
center of the cells. Using the finite volume method, it is necessary to esti-
mate variable values on the cell surfaces. The main idea of the upstream 
methods is to estimate the surface value from the upstream cell. The first 
order method uses information in only one cell upstream of the cell sur-
face. In other words: the concentration at a cell surface for the first-order 
upstream method is the same as the concentration in the cell on the 
upstream side of the cell side. 

The control volume method is based on continuity of sediments. The 
basis of the calculation is the fluxes on a cell surface. The surface area 
is denoted A; the velocity at the surface, normal to it, is denoted U; c is 
the concentration at the surface, and Γ is the turbulent diffusion at the 
surface.

The convective flux is calculated as: U * A * c (5.3.1)
The diffusive flux is calculated as: Γ * A * dc / dx (5.3.2)

The term dc/dx is calculated as the concentration difference between the 
cells on each side of the surface, divided by the distance between the 
centres of the cells. Looking at the west side of cell p, Fig. 5.3.1 explains 
the variable locations and the fluxes in the center cell.

The flux, Fw, through the west side of cell P then becomes:

(5.3.3)

where Aw is the area of the cell wall on the west side, equal to Δy times 
the height of the wall. For the other sides, the following fluxes are 
obtained:

cw cp ce

cs

cn

UeUw
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 Un
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Aw cw cp–( )
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(5.3.4)

(5.3.5)

(5.3.6)

Sediment continuity means the sum of the fluxes is zero, in other words:

(5.3.7)

This gives the following equation:

(5.3.8)

When we compare Equation 5.2.2 with Equation 5.3.8, we see they are 
the same. The concentration in Cell P is a function of the concentration 
in the neighbouring cells. The resulting weighting factors are:

(5.3.9)

(5.3.10)

(5.3.11)

(5.3.12)

(5.3.13)

The water continuity equation for the grid cell is: 

(5.3.14)

or:

(5.3.15)

If the above equation is inserted into the expression for ap, the equation

(5.3.16)

is verified to be correct.

Note that the equations above are only valid if the velocity flows in the 
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same direction as given on the arrows in Fig. 5.3.1. 

Example: 

Particles are deposited in a river with constant width and depth. A 2D sit-
uation is assumed, averaged over the width. The north-south direction is 
used as the vertical direction, so the indexes s and n are replaced by b 
and t. Further simplifications are:

- uniform the water flow
- negligible horizontal diffusion

Then the vertical velocity is equal to the sediment particle fall velocity, w. 
Also, the grid can be made orthogonal and two-dimensional, so Ae = Aw 
= dy, and Ab = At = dx. The weighting factors then become:

      ae = 0.0 
      aw = U dy 
      ab = Γ dx/dy (5.3.17)
      at = w dx + Γ dx/dy 
      ap = U dy + w dx + 2 Γ dx/dy

If for example, U is 2 m/s, w is 0.01 m/s, Γ is 0.01 m2/s, and the river 
depth is 4 meters, we may assume 10 cells in the vertical direction, giv-
ing dy = 0.4 m. Modelling a reach of 1 km with 100 cells, gives dx=10 m. 
The coefficients becomes:

      ae = 0.0 
      aw = 0.8 
      ab = 0.25 (5.3.18)
      at = 0.35 
      ap = 1.4

The numbers can be inserted in a spreadsheet and the problem solved. 
This is described in the next chapter.

The Power-Law Scheme

The Power-Law Scheme is a first-order upstream scheme where the dif-
fusive term is multiplied with the following reduction factor:

(5.3.19)

where Pe is the Peclet number, given by:

(5.3.20)

The Peclet number is the ratio of convective to diffusive fluxes. The fac-
tor f is always between 1 and 0. The diffusive term will be reduced for 
flows where the convection is large compared with the diffusion. 

5.4 Spreadsheet programming

Given formulas for the water flow field and the turbulence, it is possible 
to make a spreadsheet for calculation of the pollutant concentration. One 

f 1 0.1 Pe–( )5
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Pe
UΔx

Γ
-----------=
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1

2

3

4

5

6

7

8

9

10
application is to calculate the trap efficiency of a sand trap. Then a two-
dimensional width-averaged approach is used. A structured orthogonal 
grid is used, where each cell in the grid is simulated by a cell in the 
spreadsheet. If a uniform water velocity and turbulence field can be 
assumed in the vertical direction, then the same anb coefficients can be 
used for all the cells. A more advanced approach is to use a logarithmic 
velocity distribution, and a given distribution of the eddy-viscosity. 

If the simpler approach is used, the coefficients anb can be calculated 
before the programming starts. This is based on the formulas given pre-
viously, and a chosen number of grid cells. The grid is structured, orthog-
onal and all cells have the same size. 

A figure of this spreadsheet is given below, with 8 cells in the vertical 
direction, and 9 cells in the horizontal direction. The size of the grid can 
of course be changed according to the dimensions of each problem.

The cells marked X are inflow boundary conditions. These are the 
A2..A10 cells. A concentration value is given in these cells. A constant 
value can be given, or it is possible to use a formula for the vertical distri-
bution of the concentration. 

The cells marked 0 is the boundary condition at the water surface. This 
is zero.

The cells marked Y is the outflow boundary condition. If the horizontal 
diffusion is assumed to be zero, the values in these cells will not affect 
the computation. If the horizontal diffusion is non-zero, a zero gradient 
boundary condition can be used. Then the formula in these cells should 
be:

      Cell K2: =J2
      Cell K3: =J3
       ...
      Cell K10: =J10

A B C D E F G H I J K

0 0 0 0 0 0 0 0 0 0

X Y

X Y

X Y

X Y

X Y

X Y

X Y

X Y

X Z Z Z Z Z Z Z Z Z Y
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The method of invoking 
more iterations is depend-
ent on the particular 
spreadsheet program. For 
Lotus 123, use F9 on the 
keyboard repeatedly. For 
MS Excel, use the menu 
Tools, Options, Calcula-
tions, and cross off Itera-
tions, and give a number 
in the edit-field, for exam-
ple 50.
The cells marked Z is the bed boundary condition. A formula for the equi-
librium sediment concentration can be used, for example van Rijn’s for-
mula, given in Chapter 9.6. However, often the shear stress is below 
critical at the bed of the sand trap, giving zero concentration. This will not 
be correct, as the sediment concentration at the bed will always be 
higher than the cell above. Therefore, the concentration can be set equal 
to the concentration in the cell above. 

(Note that a more detailed calculation will give a very low diffusion coeffi-
cient close to the bed of the sand trap, meaning the concentration in the 
cell above the bed is independent of the concentration in the bed bound-
ary. For a simplified calculation, the diffusion coefficient is significant. 
Then the same result is obtained if zero gradient boundary condition is 
used.) 

      Cell B10: =B9
      Cell C10: =C9
      ...
      Cell J10: =J9

The discretized formula now has to be given in all the remaining interior 
cells. As an example, the following data is assumed:

      aw = 0.1
      an = 0.2
      as = 0.006
      ae = 0.002
      ap = 0.308

Starting in cell B2, we give the following formula:

      +(0.1*A2+0.2*B1+0.006*B3+0.002*C2)/0.308 

This formula is copied to all the interior cells, from cell B2 to J9. After-
wards, the calculation has to be repeated some times to get conver-
gence. 

The trap efficiency is calculated by first summing the inflow and the out-
flow:

Inflow: sum of cells A2..A10
Outflow: sum of cells K2..K10

Trap efficiency = (Inflow-Outflow)/Inflow

Running this case with varying number of grid cells will give different 
result for the trap efficiency. The next chapter explains why.

5.5 False diffusion

False diffusion is due to the approximations in the convective terms in 
the discretization schemes. More specifically, how the concentration on 
the cell side is calculated. The effect is best shown with a coarse grid 
and steep gradients, for example the following situation:

A sand trap is calculated with 5 x 5 cells in the vertical and horizontal 
direction, respectively. The cells are 1 meter high and 5 meters long. The 
water velocity is 0.3 m/s, and the sediment fall velocity is 6 cm/s. The 
sediments are added from a point source at the water surface, over a 
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Figure 5.5.1. Profile of 
the real concentration 
in the geometry

0.

Figure 5.5.2. Grid 
with computed con-
centration values
length of 5 meters. There is no turbulence! This gives the following theo-
retical concentration profile in the flow:

The concentration is unity along a band in the flow. The concentration is 
zero elsewhere.

The first-order upstream scheme is used to calculate the concentration. 
The following coefficients are obtained:

      an = 0.06 * 5 = 0.3
      aw = 0.3 * 1 = 0.3
      as = 0.0
      ae = 0.0
      ap = 0.6

This gives an/ap = 0.5 and aw/ap = 0.5. In other words, the concentration 
in a cell is the average of the concentration in the cell above and in the 
cell upstream. The boundary condition is a concentration of unity in one 
cell at the surface, and zero concentration in the other surface cells and 
the inflow cells. The following result is obtained:

The maximum concentration has decreased from unity to 0.137 at the 
bed. It has also been smeared out over several cells at the bed. 

False diffusion can be avoided by:

- aligning the grid with the flow direction
- increasing the number of grid cells
- using higher order schemes

The last option is described in the following chapter.
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cww

cw

cWFigure 5.6.1 Defini-
tion sketch for 
concentration esti-
mation at the wall, 
W, for the SOU 
scheme.
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Figure 5.6.2 SOU nine-
point calculation molecule
5.6 The Second Order Upstream Scheme

The Second-Order Upstream (SOU) method is based on a second-order 
accurate method to calculate the concentration on the cell surfaces. The 
method only involves the convective fluxes, and the diffusive terms are 
calculated as before. The following figure shows the calculation of the 
concentration on the west side of cell p: side W:

The cell on the west side of cell w is called cell ww. The concentration in 
this cell is denoted cww. The concentration in cell w is denoted cw and 

the concentration on side W of cell p is denoted cW. The SOU scheme 
uses the concentration in cell ww and cell w to extrapolate linearly to 
side W. Given the width of the cell in the x-direction is dx, and the height 
in the y-direction is dy, it is possible to derive a formula for the concentra-
tion on side W by triangulation:

(5.6.1)

 
or

(5.6.2)

Equation 5.6.1 is only valid if the cells are of equal size. If the expansion 
ratio is different from unity, a separate formula needs to be applied, 
where the coefficients 3/2 and ½ are given as a function of the expansion 
ratio. 

The calculation molecule now gets nine cells, as shown in the figure to 
the left

The flux through the west side of Cell P then becomes:

(5.6.3)

 For the other sides, the following fluxes are obtained:
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(5.6.4)

(5.6.5)

(5.6.6)

Again, the equations are only valid if the velocity vectors are in the same 
direction as in Fig. 5.3.1. The weighting factors become:

(5.6.7)

(5.6.8)

(5.6.9)

(5.6.10)

(5.6.11)

(5.6.12)

(5.6.13)

(5.6.14)

For the SOU scheme, Equation 5.3.1 now becomes:

     (5.6.3)

The formula is used for a two-dimensional situation. In 3D, the terms for 
top and bottom is also added, giving four extra coefficients: at, att, ab, 
abb.

5.7 Time-dependent computations and source terms

The derivations given previously has been made under the assumption 
of a steady state condition. Often, it is necessary to compute the concen-
tration changes over time. In Chapter 5.3, the fluxes into cell P was 
equal to the fluxes out of the cell. In a time-dependent situation, this may 
not be the case. To derive an equation for this problem, we look at what 
happens during a time step Δt, between time t and t-1. The mass 
change, m, in cell P would then be: 

(5.7.1)
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The volume of cell P is then denoted Vp

The fluxes in and out of cell P can then be computed as previously, but it 
is necessary to multiply with the time step, to get the mass instead of the 
flux. Equation 5.3.7 becomes:

(5.7.2)

Combining Eqs. 5.7.1 and 5.7.2, we obtain:

(5.7.3)

The left side of the equation is similar to the steady state situation. For a 
time-dependent computation, the term on the right hand side emerges. 
The equation can be rewritten:

(5.7.4)

The anb and ap coefficients are now the same as for the steady equation. 
The additional term on the right side is called a source term. In a com-
puter program these has to be calculated. The most commonly way of 
doing this for Eq. 5.7.4 is by dividing the source term in two, according 
to: 

(5.7.5)

The source terms are:

(5.7.6)

This term only depends on known variables, as the concentration at the 
previous time step is known.

(5.7.7)

The final equation can then be written in the following way, where the anb 
and ap  coefficients are the same as for the steady case:

 (5.7.8)

The equation can be solved similarly as for a steady case. However, 
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because of the new dimension, time, it is difficult to do this in a spread-
sheet. A computer program is often necessary.

The transient convection-diffusion equation can be written:

(5.7.9)

5.8 Grid independency tests

The choise of grid layout and number of grid cells in the domain is often 
the most important parameters for the quality of the result from a numer-
ical computation. To assess if the number of grid cells is sufficient, there 
exist several grid independency tests. One common test is called the 
Grid Convergence Index (GCI). The results from the same calculation is 
here compared, but done with two grids of different size: Grid 1 is the 
finer grid, and Grid 2 is the coarser grid. The GCI indeis is then com-
puted with the following formula (Celik et al, 2008):

(5.8.1)

The index 21 denotes the two grids: 1 and 2. The deviation, e21, in the 
result between the two grids is given from the following formula:

(5.8.2)

The parameter f is a result from one grid. This could for example be the 
trap efficiency for a sand trap, or the discharge for a spillway computa-
tion. The parameter r21 in Eq. 5.8.1 is the ratio of the grid cell lengths in 
the two grids. This can be computed from the following equation: 

  (5.8.3)

The charachteristic grid cell length is denoted h. If the grid is three-
dimensional, and the cells have different size in more than one direction, 
the charachteristic cell length can be computed from the following for-
mula: 

(5.8.4)

V is the volume of each cell j, and M is the number of cells in the grid. 

Example:

A CFD program computes the discharge over a spillway. Two grids are 
used. The finer grid has 1 million cells, and the coarser grid has 0.7 mil-
lion cells. The finer grid gives a discharge of 30 m3/s, and the coarser 

∂c
∂t
----- U+

i

∂c
∂xi
------- ∂

∂xi
------- Γ ∂c

∂xi
------- 

 =

GCI
21 1.25e

21

r
21

1–
------------------=

e
21 ϕ1 ϕ2–

ϕ1
------------------=

r
21 h2

h1
-----=

h
1
M
----- Vj

j 1=

M


 
 
 
 

1
3
---

=



Numerical Modelling and Hydraulics                                                                                                         67
grid gives a disharge of 31 m3/s. Compute the GCI for the case:

Solution:

First, compute the deviation: 

Then, compute the h indexes. The total volumes of the two grids must be 
the same. The ratio, r, then becomes: 

This is inserted into the definition of the GCI index:

 = 33 %

There are also a number of other indexes for computing the grid inde-
pendency. 

5.9 Problems

The following three line styles 
are used in the sketches in 
the problems 1-6:

Problem 1. Grid for reservoir

Make a sketch of a 2D structured non-orthogonal grid with 300 cells for 
the geometry given below. 

Problem 2. Structured grid for groyne

Make a sketch of a 2D structured non-orthogonal grid with 300 cells for 
the geometry given below, without using outblocking. 
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Problem 3. Grid with outblocking

Make a sketch of a structured non-orthogonal grid with 300 cells for the 
geometry given below, but use outblocking for the groyne. 

Problem 4. Grid for bay

Make a sketch of a structured non-orthogonal grid with 600 cells for the 
geometry given below. 

Problem 5. Cylinder grid

Make a paper sketch of a structured non-orthogonal grid with 2400 cells 
for a circular cylinder with diameter 1.0 meters placed vertically in the 
centre of a 4 meter wide and 7 meter long flume. 

Problem 6. Dispersion of particles

Particles are dumped in a river with depth 2 meters, velocity 1 m/s and a 
slope of 1/300. The particles have a fall velocity of 0.01 m/s. A water 
intake is located 1 km downstream of the dumping place. What is the 
percentage of particles passing the intake? Assume no resuspension of 
the particles, and that the particles are added close to the water surface.
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Claude Louis Marie 
Henri Navier was profes-
sor at École Polytecnique 
in Paris from 1819 to 
1831. He derived the 
Navier-Stokes equations 
in 1822, 23 years before 
Stokes. Prof. Navier also 
worked on road and 
bridge constructions, and 
derived theories for sus-
pension bridges. 

Figure 6.1.1 Time series 
of water velocity, for def-
inition of velocity fluctu-
ations, u.

“Big whirls have little 
whirls that feed on their 
velocity, 

and little whirls have 
lesser whirls and so on to 
viscosity.”

L. R. Richardson 

(Richardson number, 
Chapter 7.3). 
6. Numerical modelling of water velocity in 
2D and 3D 

This chapter describes the solution procedures for the Navier-Stokes 
equations. These equations describe the water velocity and turbulence 
in a river or a hydraulic system. 

6.1 The Navier-Stokes equations

The Navier-Stokes equations describe the water velocity, U. The equa-
tions are derived on the basis of equilibrium of forces on a small volume 
of water in laminar flow: 

 (6.1.1)

The pressure is denoted P, ν is the kinematic viscosity and ρ is the water 
density. For turbulent flow, it is common to use the Reynolds’ averaged 
versions of the equations. The Reynolds’ averaging is described first.

We are looking at a time series of the velocity at a given location in tur-
bulent flow:

The velocity, Ut is divided into an average value U, and a fluctuating 
value u. The two variables are inserted into the Navier-Stokes equation 
for laminar flow, and after some manipulations and simplification the 
Navier-Stokes equation for turbulent flow emerges:

          (6.1.2))

P is the pressure and δij is the Kronecker delta, which is 1 if i=j and 0 oth-
erwise. The last term is the Reynolds stress term, often modelled with 
the Boussinesq’ approximation:

 (6.1.3)

∂Ui

∂t
--------- Uj

∂Ui

∂xj
---------+

1
ρ
--- ∂

∂xj
------- Pδij– ρν

∂Ui

∂xj
---------

∂Uj

∂xi
---------+ 

 + 
 =

Ut

Time

u

U

∂Ui

∂t
--------- Uj

∂Ui

∂xj
---------+

1
ρ
--- ∂

∂xj
------- Pδij– ρuiuj–( )=

ρuiuj– ρνT

∂Ui

∂xj
---------

∂Uj

∂xi
---------+ 

  2
3
---ρkδij–=



Numerical Modelling and Hydraulics                                                                                                         70

Important note: 

Modern CFD using the 
finite volume method, the 
SIMPLE method and the 
k-ε turbulence model was 
pioneered by a group of 
researchers in the early 
1970’s at Department of 
Mechanical Engineering, 
Imperial College, London. 
The group included 
researchers as D. B. 
Spalding, B. E. Launder, 
S. V. Patankar and W. 
Rodi. The algorithms are 
used in most commercial 
CFD programs today. 
The variable k is the turbulent kinetic energy. This is further described in 
Chapter 6.3. Inserting Equation 6.1.3 into Equation 6.1.2 and regrouping 
the variables:

      

(6.1.4)

There are basically five terms: a transient term and a convective term on 
the left side of the equation. On the right side of the equation there is a 
pressure/kinetic energy term, a diffusive term and a stress term.

The convective and diffusive term are solved with the same methods as 
the solution of the convection-diffusion equation for dispersion modelling 
in Chapter 5. The difference is that the pollution concentration is 
replaced by the velocity. 

The stress term is sometimes neglected, as it has very little influence on 
the solution for many cases. The pressure/kinetic energy term is solved 
as a pressure term. The kinetic energy is usually very small, and negligi-
ble compared with the pressure.

A difference between Eq. 6.1.4 and the convection-diffusion equation for 
sediments is the diffusion coefficient. Eq. 6.1.4 includes an eddy-viscos-
ity instead of the diffusion coefficient. The relationship between these 
two variables is:

     νT = Sc Γ (6.1.5)

where Sc is the Schmidt number. This is usually set to unity, meaning 
the eddy-viscosity is the same as the turbulent diffusivity.

This leaves the problem of solving the pressure term. Several methods 
exist, but with the control volume approach, the most commonly used 
method is the SIMPLE method. This is described in the next chapter.

6.2 The SIMPLE method

SIMPLE is an abbreviation for Semi-Implicit Method for Pressure-Linked 
Equations. The purpose of the method is to find the unknown pressure 
field. The main idea is to guess a value for the pressure and use the con-
tinuity defect to obtain an equation for a pressure-correction. When the 
pressure-correction is added to the pressure, water continuity is satis-
fied.

To derive the equations for the pressure-correction, a special notation is 
used. The initially calculated variables do not satisfy continuity and are 
denoted with an index *. The correction of the variables is denoted with 
an index ‘. The variables after correction do not have a superscript. The 
process can then be written:

     P = P* + P’ (6.2.1)
     Uk = Uk* + Uk’ (6.2.2)

P is the pressure and U is the velocity. The index k on the velocity 
denotes direction, and runs from 1 to 3 for a 3D calculation.

Given guessed values for the pressure, the discretized version of the 
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Exam suggestions from 
students on what SIMPLE 
stands for:

Semi-Implicit Multiple Pres-
sure Loss Equation

Surface IMplied Pressure 
Level Elements

Semi-Imperfect Pressure 
Link Estimation
Navier-Stokes equations is: 

(6.2.3)

The convective and diffusive terms have been discretized as described 
in Chapter 3. The variable B contains the rest of the terms besides the 
convective term, the diffusive term and the pressure term. In the pres-
sure term, Ak is the surface area on the cell wall in direction k, and ξ is 
an index for the grid, described in Chapter 5. Looking at a pressure dif-
ference between two neighbour cells, ξ will be unity.
 
The discretized version of the Navier-Stokes equations based on the 
corrected variables can be written as:

(6.2.4)

If this equation is subtracted from Equation 6.2.3, and the two Equations 
6.2.2 and 6.2.3 are used, the following equation can be made for the 
velocity correction in cell P:

(6.2.5)

A simplification has then been made to neglect the first term on the right 
side of Eq. 6.2.4. The SIMPLEC method instead uses the following for-
mula: 

(6.2.6)

Equations 6.2.5 and 6.2.6 give the velocity-corrections once the pres-
sure-corrections are known. To obtain the pressure-corrections, the con-
tinuity equation is used for cell P, where the water fluxes through each 
cell side are summed up:

(k=1,2,3) (6.2.7)

The term  is equal to the water continuity deficit in each cell, 

from the previous iteration. We denote this expression to be ΔV. 

The expression for the velocity correction from Equation 6.2.5 is inserted 
into Equation 6.2.7, eliminating it as unknown. Summing up over each 
side of the cell, the pressure correction gradient can be discretized for 
one side as follows: 
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Side east: (6.2.8)

Using this formula for four sides in a 2D situation, Eq. 6.2.7 can be writ-
ten: 

(6.2.9)

The result is an equation where only the pressure-correction is unknown:

(6.2.10)

The index 0 is used to indicate the new set of a0
nb coefficients. The 

source term, b, in Eq. 6.2.10 will be the water continuity deficit ΔV from 
the guessed velocity field. When water continuity is satisfied, this term is 
zero, and there are no more corrections to the pressure. 

The following formula is derived for a0
e:

(6.2.11)

A similar equation holds for the other a0
nb coefficients. The index e is 

then replaced by w, n, s, t or b. The ap,e factor is the average ap value in 
cell p and cell e. 

Equation 6.2.10 is solved in the same way as the other equations. 

The procedure is therefore:

Guess a pressure field, P*
Calculate the velocity U* by solving Equation 6.2.3 
Solve equation 6.2.10 and obtain the pressure-correction, P’
Correct the pressure by adding P’ to P*
Correct the velocities U* with U’ using equation 6.2.5.
Iterate from point 2 to convergence

An equation for the pressure is not solved directly, only an equation for 
the pressure-correction. The pressure is obtained by accumulative addi-
tion of the pressure-correction values.

The SIMPLE method can give instabilities when calculating the pressure 
field. Therefore, the pressure-correction is often multiplied with a number 
below unity before being added to the pressure. The number is a relaxa-
tion coefficient. The value 0.2 is often used. The optimum factor depend 
on the flow situation and can be changed to give better convergence 
rates. Relaxation coefficients are further described in Chapter 6.5. 

Regarding the difference between the SIMPLE and the SIMPLEC 
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The book Numerical Heat 
Transfer and Fluid Flow, 
by S. V. Patankar, is one 
of the most readable texts 
on CFD, and provides an 
excellent introduction to 
this science.

Patankar taught CFD at 
the Norwegian University 
of Science and Technol-
ogy in 1977. 

The kinematic viscosity is 
a fluid property, while the 
turbulent eddy-viscosity 
depends of the velocity 
field.

Komogorov micro scale: 
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method, the SIMPLEC should be more consistent in theory, as a more 
correct formula is used. Looking at Equations 6.2.5 and 6.2.6, the SIM-
PLE method will give a smaller correction than the SIMPLEC method, as 
the denominator will be larger. The SIMPLE method will therefore move 
slower towards convergence than the SIMPLEC method. If there are 
problems with instabilities, this can be an advantage.

A more detailed description of the SIMPLE method is given by Patankar 
(1980).

Most pressure-correction methods for incompressible flow follows algo-
rithms similar to SIMPLE. There are algorithms involving more correction 
steps, for example SIMPLER and PISO. Note that the different method 
will only affect the convergence speed and the stability of the solution. 
The accuracy of the results will not be directly affected, as long as the 
methods are based on water continuity. 

6.3 Advanced turbulence models

The following chapter is a brief overview of advanced turbulence mod-
els. The reader is referred to White (1974) and Rodi (1980) for more 
detailed description of turbulence and turbulence models. 

In chapter 6.1, the Boussinesq approximation was introduced for finding 
an expression for the Reynolds’ stress term:

 (6.3.1)

νT is the turbulent eddy viscosity. 

Some simpler turbulence models were described in Chapter 3. These 
models require calibration before being used on new cases. They are 
also based on algebraic relations, and no differential equations are 
solved when computing the eddy-viscosity. The models are then often 
called zero-equation models. 

A more advanced approach is to use more complex methods to com-
puted the eddy-viscosity. One option is to use a partial differential equa-
tion for νT. One of the more popular approaches is the Spalart-Allmaras 
model: 

The Spallart-Allmaras model

The model (Spallart and Allmaras, 1994) is essentially a convection-dif-
fusion equation for the eddy-viscosity, where different terms are included 
to take special physical phenomena into account. 

(6.3.2)

The first term on the right side is the production of turbulence. There are 
several ways this can be modelled. One is: 
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 (6.3.3)

The next term on the right side of Eq. 6.3.2 is the diffusion of turbulence. 
The last term is related to damping of turbulence close to the wall. The 
distance to the wall is given as d. Spalart and Allmaras suggested the 
following function for fw: 

                        

(6.3.4)

The remaining parameters are constants: 

cb1 = 0.1355, cb2 = 0.622, σ = 2/3, cw1 = 3.28, cw2 = 2, cw3 = 0.3, κ=0.4  

The k-ε model

Instead of solving only one equation for the eddy-viscosity, it is possible 
to use two partial differential equations. The most popular two-equation 
model is the k-ε model (Jones and Launder, 1973). The k-ε model com-
putes the eddy-viscosity as:

(6.3.5)

k is turbulent kinetic energy, defined by:

(6.3.6)

k is modelled as:

(6.3.7)

where Pk is the production of turbulence, given by:

(6.3.8)

The dissipation of k is denoted ε, and modelled as:

(6.3.9)

The constants in the k-ε model have the following standard values:
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The main advantage of 
the k-ε model is the almost 
universal constants. The 
model can thereby be 
used on a number of vari-
ous flow situations with-
out calibration. For river 
engineering this may not 
always be the case, 
because when friction 
along the bed is influenc-
ing the flow field, the 
roughness of the bed also 
needs to be given. If the 
roughness can not be 
obtained from direct 
measurements, it has to 
be calibrated with meas-
urements of the velocity.
     cμ = 0.09
     Cε1 = 1.44
     Cε2 = 1.92 (6.3.10)
     σκ = 1.0
     σε = 1.3

As seen from Equation 6.3.1, the eddy-viscosity is isotropic, and mod-
elled as an average for all three directions. Schall (1983) investigated 
the eddy-viscosity in a laboratory flume in three directions. His work 
shows that the eddy-viscosity in the streamwise direction is almost one 
magnitude greater than in the cross-streamwise direction. A better turbu-
lence model could therefore give more accurate results for many cases.

More advanced turbulence models

To be able to model non-isotropic turbulence, a more accurate represen-
tation of the Reynolds stress is needed. Instead of using the Boussinesq 
approximation (Equation 6.3.1), the Reynolds’ stress can be modelled 
with all terms:

(6.3.11)

The following notation is used: u is the fluctuating velocity in direction 1, 
v is the fluctuating velocity in direction 2 and w is the fluctuating velocity 
in direction 3. 

The nine terms shown on the right hand side of Equation 6.3.8 can be 
condensed into six different terms, as the matrix is symmetrical. A Rey-
nolds’ stress model will solve an equation for each of the six unknown 
terms. Usually, differential equations for each term are solved. This 
means that six differential equations are solved compared with two for 
the k-ε model. It means added complexity and computational time.

An alternative is to use an Algebraic Stress Model (ASM), where alge-
braic expressions for the various terms are used. It is also possible to 
combine the k-ε model with an ASM to obtain non-isotropic eddy viscos-
ity (Rodi, 1980).

An even more advanced method is to resolve the larger eddies with a 
very fine grid, and use a turbulence model only for the smaller scales. 
This is called Large-Eddy Simulation (LES). If the grid is so fine that sub-
grid eddies do not exist because they are dissipated by the kinematic 
viscosity, the method is called a Direct Solution (DS) of the Navier-
Stokes equations. 

Note that both LES and especially DS modelling require extreme compu-
tational resources, presently not available for engineering purposes. 

6.4 Boundary conditions

Boundary conditions for the Navier-Stokes equations are in many ways 
similar to the solution of the convection-diffusion equation. In the follow-
ing text, a division in four parts is made: Inflow, outflow, water surface 
and bed/wall.

ρuiuj– ρ
uu vu wu

uv vv wv

uw vw ww

–=
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Inflow

Dirichlet boundary conditions have to be given at the inflow boundary. 
This is relatively straightforward for the velocities. Usually it is more diffi-
cult to specify the turbulence. It is then possible to use a simple turbu-
lence model, like Equation 3.4.1 to specify the eddy-viscosity. Given the 
velocity, it is also possible to estimate the shear stress at the entrance 
bed. Then the turbulent kinetic energy k at the inflow bed is determined 
by the following equation:

(6.4.1)

This equation is based on equilibrium between production and dissipa-
tion of turbulence at the bed cell.

Given the eddy-viscosity and k at the bed, Equation 6.3.2 gives the value 
of ε at the bed. If k is assumed to vary linearly from the bed to the sur-
face, with for example half the bed value at the surface, Equation 6.3.2 
can be used together with the profile of the eddy-viscosity to calculate 
the vertical distribution of ε.

Outflow

Zero gradient boundary conditions can be used at outflow boundaries for 
all variables. A boundary condition where the gradient is specified is 
often called a von Neumann condition.

Water surface

Zero gradient boundary conditions are often used for ε. The turbulent 
kinetic energy, k, can set to zero. Rodi (1980) gives an alternative 
expression for computing k at the water surface. Symmetrical boundary 
conditions are used for the water velocity, meaning zero gradient bound-
ary conditions are used for the velocities in the horizontal directions. The 
velocity in the vertical direction is calculated from the criteria of zero 
water flux across the water surface.

Bed/wall

The flux through the bed/wall is zero, so no boundary conditions are 
given. However, the flow gradient towards the wall is very steep, and it 
would require a significant number of grid cells to dissolve the gradient 
sufficiently. Instead, a wall law is used, transformed by integrating it over 
the cell closest to the bed. Using a wall law for rough boundaries 
(Schlichting, 1980)

(6.4.2)

also takes the effect of the roughness, ks, on the wall into account. The 
velocity is denoted U, u* is the shear velocity, κ is a coefficient equal to 
0.4 and y is the distance from the wall to the centre of the cell.

The wall law is used both for the velocities and the turbulence parame-
ters. The use on turbulence parameters is described in more detail by 
Rodi (1980). For the velocities, the wall shear stress is a force on a cell, 
and it is computed as a sink term in the Navier-Stokes equation. The 

k
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U
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κ
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--------- 
 ln=



Numerical Modelling and Hydraulics                                                                                                         77

Figure 6.5.1 Conver-
gence graph for the 
velocity in one cell.
force is computed by rearranging Eq. 6.4.2:

 (6.4.3)

The area of the cell at the bed is denoted A, while y is the distance from 
the center of the cell to the bed. The velocity in the bed cell is denoted U.

6.5 Stability and convergence

The solution method described previously are iterative. The principle is 
to guess a starting value for the variables and then iterate to get a better 
solution. The procedure is illustrated in Fig. 6.5.1.: 

Convergence criteria

In an iterative procedure, some criteria has to be met to decide if the 
solution is converged. Several different criteria exist, based on computa-
tion of a residual. The residual is a measure of how large the deviation is 
between the correct value and the values in the current iteration. A low 
residual indicates that convergence is reached.

One formula for the residual, r, is given in Eq. 6.5.1:

(6.5.1)

Fc is a characteristic flux, and Uc is a characteristic velocity. The values 
at the inflow boundary are often used. The total number of cells in the 
grid is denoted n. 

Example: We are looking at one 2D cell with the following parameters: 

aw = 2.0, Uw = 1.0
ae = 0.5, Ue = 0.3
an = 1.0, Un = 0.4
as = 0.3, Us = 0.7
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Figure 6.5.2 Conver-
gence graph for the 
velocity in one cell. 
The correct value is not 
obtained, but still the 
new values in the itera-
tions are the same as in 
the previous iteration.
For simplicity, we assume that the source term is zero. 

The first time cell p is computed, the following values are obtained: 

ap = 3.8. Up = 0.73

The velocity in cell P is computed from Eq. 5.2.2, where the concentra-
tion is replaced by the velocity.

After the cell is computed, the east and north cells are recomputed and 
get different values. They now have values:

Ue = 0.35
Un = 0.45

The contribution of this cell to the residual of Eq. 6.5.1 becomes: 

     = 0.075

Note that the values from the previous iteration is not used. 

Another convergence criteria is based on the difference in the values 
between two iterations: 

(6.5.2)

The disadvantage with using Eq. 6.5.2 is that the residual can go to zero 
even if the solution is not converged. This is illustrated in Fig. 6.5.2:

The reason for this can be that the velocity-correction equation from the 
SIMPLE method may change the velocities back to what they were 
before the application of the solver. Also, possible bugs in the program 
can give the same problem. Many CFD programs therefore prefer to use 
Eq. 6.5.1 instead of Eq. 6.5.2. 

Instabilities 

It is not always that the iterative solution method is successful in obtain-
ing convergence. The system of equations may be unstable. The con-
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Figure 6.5.3 Conver-
gence graph for the 
velocity in one cell, 
where there are insta-
bilities and non-con-
vergence..
vergence graph for one cell may then look like what is given in Fig. 6.5.3. 
The values may oscillate, and more and more extreme values are pro-
duced. Often, one defines a solution crash as the residuals becoming 
above a high value, for example 1010.

There are several methods to prevent instabilities and accelerate con-
vergence. Some are further described in the following.

Relaxation

The main principle in the solution of the equations are to obtain an 
improvement of a guessed velocity field. Starting with the guessed val-
ues, several iterations are done to improve the result. For each iteration, 
a new guess is made. Let us say that we have finished iteration i-1 and i, 
and we are looking at what variables, v, we should use when starting 
iteration i+1. An obvious choice is of course the variables at iteration i. 
However, introducing the relaxation coefficient, r, instead we use:

     v = r * vi + (1-r) * vi-1 (6.5.3)

The relaxation coefficients should normally be between 0 and 1.

Relaxation will give a slower convergence speed towards the final solu-
tion, but there will be less instabilities. If the solution diverges or does not 
converge because of instabilities, a normal measure is to lower the 
relaxation coefficients.

Multigrid and block-correction

The purpose of the multigrid methods is to speed up the convergence of 
the solution. The main principle is a division of the grid several coarser 
sub-grids. This is shown in Figure 6.5.4. The discretized equations on 
the fine grid are transferred to the medium grid and then to the coarser 
grid. This procedure is called restriction. The equations are solved on 
the coarse grid, and the solution is transferred to the medium grid, where 
a finer solution is made. The procedure is repeated to the fine grid, 
where the solution is made. The transfer from coarse grid to finer grid is 
called prolongation. The sequence can be repeated. Both for the 
restriction and prolongation process, interpolation and extrapolation for-
mulas are used. 

Velocity
Correct value

Iterations 1 2 3 4 5

guessed
value
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Figure 6.5.4 Grid struc-
ture for multi-grid 
method

Figure 6.5.5 Grid structure 
block method. Original grid 
In the example in Fig. 6.5.4, only three levels of grid resolutions are 
shown. For very fine grids, there may be many more layers. 

Usually, the equation variables themselves are not moved between the 
grids, only the residuals of the first solution in the fine grid. 

A version of the multigrid method is called block-correction. For a two-
dimensional situation, the grids then look like this:

The iterations are started on the original grid. Then all variables are 
summed in a slice of the grid, so that a one-dimensional grid emerges. 
This is solved, and the result is used to correct the original values. This 
is repeated in all directions, shown here with two coarse grids, for a two-
dimensional situation.

The Rhie and Chow interpolation

Using a non-staggered variable location, all variables are calculated in 
the centre of the cells. This causes oscillations in the solution and insta-
bilities. The staggered grid was invented to avoid these oscillations. 
Then the pressure is calculated between the centres of the grid cells. 
There are several problems with this variable arrangement, especially 
for non-orthogonal grids. The Rhie and Chow interpolation was invented 
to avoid the instabilities and still use a non-staggered grid. The interpola-
tion gives the velocity on the cell surface. This velocity is used to calcu-
late the flux on the cell surface.

A derivation of the Rhie and Chow interpolation procedure is fairly 
involved, and the reader is referred to Rhie and Chow (1983). The main 
idea is to use information about pressure gradients in staggered and 
non-staggered positions. The resulting interpolation formula is a function 
of the linearly interpolated velocity plus a term dependent on the pres-
sure gradients, cell areas and the ap coefficient. 

The Rhie and Chow interpolation can be interpreted as an addition of 4th 
order artificial diffusion. However, no adjustment coefficients are used.

The Rhie and Chow interpolation is used in most CFD programs using 
the finite volume method, the SIMPLE algorithm and non-staggered 
grids.

         Coarse grid       Fine grid

                    

for multi-
to the left.
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Figure 6.5.6 Estimation of c
the central scheme
Note that the Rhie and Chow interpolation has given problems for some 
cases where there are large source terms in the Navier-Stokes equa-
tions (Olsen and Kjellesvig, 1998b). In these cases there are significant 
forces on the water in addition to the pressure, for example from gravity. 

Upstream methods and artificial diffusion

The discretization schemes given in Chapter 5 are all fairly stable for the 
calculation of sediment concentration. However, other schemes devel-
oped earlier were not so stable. The classical example is the central-dif-
ference scheme. In this method, the flux on a cell wall is calculated by 
interpolation between the cells on the two sides. The figure below shows 
the estimation. 

The fluxes through the sides are then:

(6.5.2)

(6.5.3)

(6.5.4)

(6.5.5)

Applying the continuity equation (Eq. 5.3.7), and the same method as in 
Chapter 5.3, the coefficients become:

(6.5.6)

(6.5.7)

(6.5.8)

(6.5.9)
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Artificial/false diffusion: 
Many people confuse the 
difference between artificial 
and false diffusion. Artificial 
diffusion can be seen as a 
kind of fudging factor, to get 
a stable solution. False diffu-
sion is due to inaccurate 
approximation in the discre-
tization method. 
(6.5.10)

Applying continuity, the following simplification can be done for ap:

(6.5.11)

Looking at for example ae, if the diffusivity is low compared with the 
velocity, there is a chance that ae can become negative. Also, the effec-
tive weighting factor is actually ae/ap. When the diffusion becomes small, 
the effective factor becomes very large, as ap is only a function of the dif-
fusion. A large negative number for the weighing factor is not physically 
realistic, and this causes instabilities. 

The minimum value of the diffusivity before instability occur can be cal-
culated by setting the weighting factor to zero.

(6.5.12)

This gives the following theoretical minimum viscosity to avoid instabili-
ties:

 (6.5.13)

Schemes based on the central-difference scheme or similar ill-formu-
lated numerical schemes may require adding extra diffusivity to the solu-
tion in order to become stable. This is called artificial diffusion, and 
comes in addition to the physical diffusivity. The disadvantage with add-
ing artificial diffusivity is that the increased diffusivity it may give a differ-
ent final result than what the natural diffusion would give. 

6.6 Free surface algorithms

The ability to compute flow with a free surface is important in hydraulic 
engineering. The free surface algorithms can be classified according to 
how many dimensions are used. For two-dimensional depth-averaged 
computations, similar algorithms as described in Chapter 3 can be used. 
However, there exist a large number of different algoritms for computing 
the free surface in 2D. 
For computing the free surface in 3D, the different algorithms can be 
classified according to if an adaptive grid is used or not. 

Fixed grid algorithms

The fixed grid algorithms will in general compute a two-phase flow. The 
two phases will be water and air. The algorithms must determine where 
the location of the free surface is within the grid. Some cells will be com-
pletely filled with water, and others completely filled with air. The remain-
ing cells will be partially filled with water and air. 

One of the most commonly used algorithms is called a Volume Of Fluid 
(VOF) method. The method introduces a variable called the volume of 
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fluid, defined as:

   

Vw is the volume of water in a cell and Va is the volume of air in the cell. 
The parameter r will therefore be 1 when the cell is completely filled with 
water and 0 if a cell is completely filled with air. 

The VOF ratio is computed by solving a convection-diffusion equation:

(6.6.2)

Based on the F values in all the cells, the location of the free surface 
must be determined. The reconstruction of the surface is not trivial, and 
there are several different methods that can be used. 

The VOF method is used in Flow-3D.

A more recent method that has attracted attention in research communi-
ties is the Level Set method. Instead of solving an equation for the vol-
ume of fluid, an equation for the distance, L [m], to the water surface is 
used. A convection equation for this distance is given as:

(6.6.2)

The equation is solved with similar methods as given in Chapter 5, as 
this is a convection-diffusion equation where the diffusive term is omit-
ted. 

The advantage of using the level set method instead of the volume of 
fluid method is that it is easier to compute the location of the free water 
surface once the equations are solved. 

Adaptive grid algorithms

Adaptive grid algorithms will change the grid so that the free surface 
always is aligned with its top. All the cells will thereby always be filled 
with water. No cells are thereby wasted by filling it with air. The method 
therefore needs less cells than the fixed grid algorithms. Another advan-
tage is that inaccuracies can occur when the cells are partially filled with 
water. Also, the grid close to the surface will be aligned with the flow, 
reducing false diffusion.

A disadvantage with the adaptive grid methods is that they may be more 
unstable than the fixed grid methods.

In an adaptive grid algorithm, the free surface is given an initial value. 
The algorithms will compute changes in the free surface, and adjust the 
grid accordingly. The adjustments are done in small steps, to prevent 
instabilities. 

The adaptive grid methods can be further classified from which equa-
tions are solved to compute the changes in the water levels. One 
method uses the water continuity equation in the cells close to the sur-
face (Olsen and Kjellesvig, 1998). Normally, the water continuity defect 
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Figure 6.6.1 Long
efficient of discha
is used in the SIMPLE algorithm to compute the pressure. Instead, the 
pressure is computed by linear interpolation between the cell below and 
the surface. This approach also introduces the gravity in the Navier-
Stokes equations. The gravity is a large source term, causing instabilities 
in the solution. Therefore, a very short time step has to be used. An 
example is given in Fig. 6.6.1, where the coefficient of discharge for a 
spillway is computed.

The main problems with the method is the stability and the need for 
extremely short time steps. When modelling a river over several weeks, 
it is necessary to use longer time steps. Then the gravity can not be used 
in the Navier-Stokes equation. The alternative is to use the Energy equa-
tion instead of the continuity equation to compute the changes in the free 
surface. Then the computed pressure field is used to estimate the loca-
tion of the surface, according to the following equation:

: (6.6.3)

It is then assumed that one location in the grid is kept at a known eleva-
tion. The elevation difference, dh, between this location and another cell 
in the grid can be computed from Eq. 6.6.3, given the pressure differ-
ence dp between the cells. The method is very stable and can be used 
with large time steps. However, the water close to the surface must have 
a hydrostatic pressure for Eq. 6.6.3 to be valid. Therefore, very steep 
surface slopes, like in Fig. 6.6.1 can not be computed. The location in 
natural rivers and channels can be computed.

More details about free surface algorithms are given by Olsen (2015). 

6.7 Errors and uncertainty in CFD

As shown in previous chapters, there are a number of uncertainties in 
CFD modelling, and approximations in the algorithms leads to some 

itudinal profile of the water level and velocities for computation of co-
rge for a spillway. The numbers show the computed time.
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errors in the results. The European Research Community on Flow, Tur-
bulence and Combustion (ERCOFTAC) published Best Practice Guide-
lines for CFD, where the errors are classified according to the following 
list: 

1. Modelling errors
2. Errors in the numerical approximations
3. Errors due to not complete convergence
4. Round-off errors
5. Errors in boundary conditions and input data
6. Human errors due to inexperience of the user
7. Bugs in the software

Modelling errors are errors introduced when modelling the real world 
with a number of mathematical equations. Typical modelling errors are 
using a one-dimensional formulation if there are three-dimensional 
effects affecting the problem. Another example is the assumption of an 
isotropic turbulent eddy-viscosity made for example in the standard k-e 
model. Non-isotropic effects may affect the results in some cases.

Errors due to numerical approximations are often introduced when dis-
cretization the equations. False diffusion is a typical error in the numeri-
cal approximations. 

Many times an iterative solver is used for the equations. Sometimes the 
results are used even if the solution is not fully converged. This could be 
the case if proper convergence criteria are not used. Also, for time-
dependent computations, convergence may not be reached for each 
time step.

Round-off errors are due to limitations in the accuracy of the microproc-
essors of the computers. Most numerical programs nowadays use 64 
bits floating point numbers with 12 digits accuracy, and then this is usu-
ally not a serious problem. However, earlier 32 bits programs often used 
numbers with only 6 digits accuracy, and then round-off errors could be 
significant.

Errors in the boundary conditions is one of the most common problems 
in CFD modelling. Computing flow in complex geometries the grid has to 
follow the water level and river bed completely. This is sometimes diffi-
cult. Also there may be problems with deciding boundary conditions for 
example for the roughness. Inflow boundary conditions are also uncer-
tain. This applies for the distribution of the velocity at the inlet cross-sec-
tion and the turbulence there. For sediment computations, the amount of 
sediment inflow may be uncertain. Also, the empirical formula for sedi-
ment concentration close to the bed is often not very accurate. 

Human errors due to inexperience of the user is often a likely problem. 
Experience on CFD modelling is scarce, and it is easy to make errors 
when choosing among different parameters and algorithms in the CFD 
model.

There will always be bugs in every software. An estimate often used is 
one bug pr. 1000-10 000 lines for a commercial program. A typical CFD 
program may have 100 000 - 1 million lines of code. It is therefore likely 
that most CFD program has a fair number of bugs. A CFD program is 
usually improved relatively frequently. Every time a new algorithm is 
made in the program, it is possible that bugs are introduced. This may be 
problematic to detect, as it is often difficult to predict how the new algo-
rithm with interact with the older algorithms.
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There exist a large number 
of CFD programs. Some are 
tailor-made for hydraulic 
engineering, for example 
TELEMAC, SSIIM and 
HEC-RAS 5 (made by US 
Army Corps of Engineers). 
Others are general-purpose 
programs, that can be used 
for gas, oil, multiphase flow 
etc. Some of the most used 
general-purpose programs 
are FLUENT, OpenFOAM, 
CFX, FLOW3D, and STAR-
CCM. Web addresses to 
more information about the 
programs can be found at: 
folk.ntnu.no/nilsol/cfd
6.8 SSIIM

SSIIM is an abbreviation for Sediment Simulation In Intakes with Multi-
block option. The program solves the Navier-Stokes equations in a 
three-dimensional non-orthogonal grid, using the k-ε turbulence model 
and the SIMPLE method to compute the pressure. The program also 
solves convection-diffusion equations for various water quality constitu-
ents, like sediments, temperature, algae, nutrients, pollutants etc. Time-
dependent changes in bed and surface levels are computed. 

The program was originally designed to compute sediment transport for 
hydropower intakes. Later it has been expanded to areas of river mor-
phology, hydraulic structures like spillways, head loss in contractions 
etc.; general water quality, density stratification, wind-induced currents, 
special algae algorithms etc. 

The program has a graphical user interface with an interactive grid edi-
tor, containing several algorithms simplifying the constructions of the 
grid. The main program contains graphical presentation of results in mul-
tiple dimensions, which can be run simultaneously with the solution of 
the differential equations. The program writes result files that can be 
read by the ParaView program. ParaView is freeware and has powerful 
3D graphics. 

The SSIIM program runs on Windows, and can be down loaded from the 
Internet: http://folk.ntnu.no/nilsol/ssiim. The User’s Manual gives more 
details, and can be downloaded from the same web page.

6.9 OpenFOAM

OpenFOAM is an acronym for "Open source Field Operation And Manip-
ulation". The program was made by Henry Weller from Imperial College i 
London in the 1980’s. It was launched as open source in 2004, with a 
business model where the users would pay for support and maintenance 
instead of a program license. Since then, several companies have 
emerged that sells support for OpenFOAM. 

Being open source means that the OpenFOAM program is free. This is 
an advantage compared with commercial CFD programs, as the license 
cost can be substantial. Binary versions of the program also exist, so 
most users will not need to work with the source code. However, the 
source code can be downloaded and changed by anyone. This means 
that anyone has the possibility to modify the program. For advanced 
research in CFD this is a major advantage compared with commercial 
CFD programs. PhD students can make new algorithms for the program, 
which is impossible for a commercial CFD program. New algorithms is 
necessary to advance research in CFD. OpenFOAM is therefore very 
popular in leading research groups in the world. 

OpenFOAM has earlier been relatively difficult to use, but over the last 
years improvements have been made with respect to installation, graph-
ical user interface and platform. OpenFOAM is developed for Linux, but 
several companies have made Windows version which are relatively 
easy to install on a PC. Graphical user interfaces for OpenFOAM has 
also been made. Several companies sells support and gives courses for 
OpenFOAM. OpenFOAM is still more difficult to use than the commercial 
CFD programs, for example in making the grid. However, the program is 
not considered to be slower or less accurate than commercial programs. 
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OpenFOAM has been used to compute the coefficient of discharge for 
spillways. Olsen (2015) computed the water surface elevations over a 
broad-crested weir and got good results compared with a physical model 
test. Jacobsen (2014) also obtained reasonable results for computation 
of flow over a standard ogee spillway.

OpenFOAM uses the ParaView program as post-processor, similar to 
SSIIM. 

6.10 Problems

Problem 1. Navier-Stokes solver

Apply the SSIIM model to the example with the sand trap: Tutorial 1 in 
the User’s Manual. Note how many iterations are required for conver-
gence of the Navier-Stokes equations, and how long time it takes on 
your PC.

Problem 2. Multigrid 

Repeat the calculation in Problem 1, but this time use block-correction 
for all equations. How many iterations are now needed, and how long 
time does this take? 

Problem 3. Relaxation coefficients 

Repeat the calculation as in Problem 1, but this time change the relaxa-
tion factors first to 1.0 for all the equations. How many iterations are 
needed?

Again, change the relaxation coefficients to 0.5 for all equations. How 
many iterations are needed? 

Change the relaxation coefficients to 0.3 for velocity, 0.1 for pressure 
and 0.2 for k and ε. How many iterations are needed? 

Problem 4. The Rhie and Chow interpolation

Repeat the calculation in Problem 1, but this time reduce the influence of 
the Rhie and Chow interpolation by the using the F 21 data set. Set this 
to 0.5 for one run and 0.0 for the next run. How does the Rhie and Chow 
interpolation affect the resulting trap efficiency? And how many iterations 
are needed?

Problem 5. Upstream boundary conditions

Repeat the calculation in Problem 1, but this time use uniform upstream 
and downstream velocity profile. This is done by using the G 7 data sets. 
How does this affect the convergence rate and the resulting trap effi-
ciency? What are the reasons for the change? 

Problem 6. Bed roughness

Repeat the calculation in Problem 1 twice, using a roughness of 2 cm 
and 0.1 mm. This is done by giving the roughness in the F 16 data set. 
How does the roughness affect the trap efficiency and calculation time? 
What is the reason for the change? 
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Problem 7. Initial values

Calculate the water flow for the fish farm tank example with SSIIM. How 
many iterations are needed? Remove the G 8 data set with initial veloci-
ties in the control file. What happens in the calculations and why? How is 
it possible to make the calculations converge without lowering the initial 
water velocities? 

Problem 8. Stability

Implement the central scheme for Problem 1. Vary the amount of diffu-
sion, and see how the result changes. What is the minimum amount of 
diffusion to get a stable solution? How does this compare with the real 
diffusion?
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Figure 7.2.1. Longitudinal 
profile of a lake with wind-
induced currents. The veloc-
ity profile is shown, where 
the water close to the sur-
face moves with the wind, 
and a return current is 
formed close to the bed.

“Circulation is when water 
flows in circles”. -Exam 
answer from student
7. Physical limnology

7.1 Introduction

Limnology is the science of processes in lakes, including water quality, 
temperature, ice, water currents etc. A large number of words explaining 
the processes has been made. Also various classification systems have 
been developed. This chapter focuses on the hydraulic and temperature 
processes. Biological processes and classification systems for lakes are 
given in Chapter 8. 

7.2 Circulation in non-stratified lakes

The term circulation is often used for water currents in a lake. Velocities 
in a lake are often wind-induced. The water will then follow a circulation 
pattern, moving with the wind at the water surface and a return current is 
formed close to the bed. However, the term circulation is also used if the 
water currents are due to inflow/outflow, and the water moves in almost 
straight lines. Fig. 7.2.1 shows a typical profile of wind-induced velocity 
in a shallow lake:

The magnitude of the wind-induced currents will depend on the wind 
speed. The most common approach to calculate the currents is to com-
pute a shear stress from the wind on the surface of the lake. And then 
use this shear stress to calculate the currents. The wind-induced shear 
is given by:

(7.2.1)

The wind speed is denoted Ua, ρa is the air density (around 1.2 kg/m3) 
and c10 is an empirical coefficient. The coefficient will be different 
depending on which elevation the wind is measured. The c10 coefficient 
is given for wind speeds taken 10 meters above the water surface. There 
are a number of empirical formulas for c10, for example as given by 
Bengtsson (1973)

(7.2.2)

If the wind persist for a long time, the water surface will not be horizontal 
any more. The slope, I, can be computed from equilibrium forces on a 
water element, similar to what was done for a river in Chapter 2. The 
slope becomes:

Wind

Velocity profile

Return current

τ c10ρaUa
2

=

c10 1.1*10
3–

=
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Table of water density as a 
function of temperature:

Temp (0C)    Density (kg/m3)

 0 999.87
 2 999.97
 4 1000.0
 6 999.97
 8 999.88
10 999.73
12 999.52
14 999.27
16 998.97
18 998.62
20 998.23
22 997.80
24 997.33
26 996.81
28 996.26
30 995.68

temperature flux

short-wave irradiance

long-wave irr. from atm.

long-wave irr. from water

conduction

evaporation
(7.2.3)

where h is the water depth.

The wind will also induce velocity gradients and turbulence in the lake. 
Classical hydraulics will give the following formula for the turbulent mix-
ing coefficient, Γ (derivation given in Chapter 4.2):

(7.2.4)

The shear velocity is denoted u*, h is the water depth and α is an empiri-
cal coefficient. For rivers, α has been found to be 0.11. This value was 
used successfully for lakes by Olsen et. al. (2000) modelling a small res-
ervoir in Wales, UK. However, when modelling Loch Leven in Scotland 
(Olsen et. al. 1998), the formula gave too high diffusion.

7.3 Temperature and stratification

The water density in freshwater lakes and reservoirs is mainly a function 
of the temperature, as long as the sediment concentration is reasonably 
low. Maximum density is at 4oC, with lower densities at higher and lower  
temperatures. Stratification of the lake/reservoir will therefore occur for 
some vertical temperature distributions. 

The specific heat for water is 4182 W/(kg0Cs) The temperature changes 
in the water close to the surface can be computed from the energy bal-
ance across the water surface. The sources/sinks of energy are:

- solar short-wave radiation
- atmospheric longwave radiation
- longwave black radiation from the water
- conduction
- evaporation

The formula for the surface flux, I, in Watt/m2, can be written according 
to Chapra (1997) and Henderson-Sellers (1984):

(7.3.1)

In the formula, Ir is the irradiance, B is a reduction factor and T is the 
temperature. The irradiance terms follow Stefan-Bolzmanns law, where 
σ is the Stefan-Bolzman's constant 5.67x10-8 W/(m2K4) and ε is the 
emissivity of water (~0.97). The emissivity is a correction factor for the 
water not being a perfect emitter of radiation. A is an empirical coefficient 
between 0.5 and 0.7 and eair is the vapour pressure in the air. R is a 

I
τ

ρgh
----------=

Γ αu*h=

I

IrB

σ Tair 273+( )4
A 0.003 eair+( ) 1 R–( )

εσ Tw 273+( )4
–

0.136c1 1 0.437U2+( ) Tw Tair–( )–

0.136 1 0.437U2+( ) ew eair–( )–

+

=
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Short-wave irradiance inten-
sity is usually measured in 
μmol-photons/m2/s, or 
W/m2. The conversion 
between the units is:
1 μmol photons/s = 0.3 W

Figure 7.3.1. Vertical temper
ature profiles for a dimitic lak
in the summer and the winter
reflection coefficient, which usually is very small (around 0.03). The 
parameter c1 is Bowen’s coefficient (62 Pa/oC), U2 is the wind speed 2 
meters above the water surface and ew is the saturation vapour pressure 
at the water surface. The subscript w denotes water and air the air.

The short-wave irradiance is from the sun, and depends on several 
factors: 

- Variation over the year
- Variation over the day
- Latitude of lake
- Shading by clouds
- Reflection from the water surface

All these parameters can be estimated and put into the factor B. The first 
three factors can be taken from tables. The cloud shading is determined 
by the weather conditions. And the reflection from the water surface 
depends mostly of the solar altitude. If this is above 20o, the reflection is 
less than 10 %. 

The long-wave irradiance is black-body heat emission from the atmos-
phere and the water. The term contains attenuation from the atmosphere 
and reflection. 

The conduction and convection term describes physical processes at 
the water surface. The processes are similar to convection and diffusion, 
as described in Chapter 4. Eq. 7.3.1 gives an empirical formula for these 
processes. 

Evaporation/condensation at the water surface affect the temperature, 
as the specific energy of a certain mass of water is different depending 
on if it is in liquid or gas form. The term in Eq. 7.3.1 also gives an empiri-
cal estimate of the amount of evaporation, as it is a function of the wind 
speed.    

Limnological classifications

The temperature profile of a lake will vary over the year, depending on 
the heat flux at the water surface. In different climates, there will be dif-
ferent types of stratification. The science of limnology has given several 
definitions to classification of lakes and stratification layers. 

In a temperate climate with warm summers and cold winters, the vertical 
temperature profiles are given in Fig. 7.3.1.

The upper layer close to the water surface is called epilimnion. The 
layer close to the bed is called hypolimnion. In deep lakes, the hypolim-

TT

            Summer                               Winter

-
e 



Numerical Modelling and Hydraulics                                                                                                         92
nion will hold a temperature of 4oC throughout the year. The layer 
between the epilimnion and hypolimnion is called the metalimnion. Dur-
ing the summer, the vertical temperature gradient is usually large in this 
layer. The thermocline is located in this layer, marking the difference 
between the warm upper water and the cold water close to the lake bot-
tom.

In temperate climates, the winter is cold and the summer is warm. The 
stratification will follow Fig. 7.3.1. In the summer, the warm water close 
to the surface is lighter than the cold bottom water. In the winter, the 
water close to the surface is below 4oC, and is lighter than the bottom 
water. These two situations give a stable water body, and the stratifica-
tion prevents mixing from taking place. However, during spring and fall, 
the water temperature will at some point in time be 4oC over the whole 
depth of the lake. Then vertical circulation may occur. The water from the 
bottom may rise to the surface, if wind-induced currents are present. 
This process is called a spring/fall overturn.

The science of limnology has also provided classifications of the lakes 
according to the overturns. If there is no overturn due to the surface 
water being too cold the whole year, the lake is called amictic. If only 
one overturn occur during the year, the lake is called monomictic. This 
may be due to the lake being so warm that no winter stratification is 
formed. The lake is then called warm monomictic. If the lake is so cold 
that no stable summer stratification occur, and only one overturn takes 
place in the summer, the lake is called cold monomictic. The cycle 
described in Fig. 7.3.1 with two overturns is present in dimictic lakes. 
There are also lakes with multiple overturns, called polymictic lakes. 
This is due to small changes in seasonal temperature and strong winds. 

Turbulence damping

When horizontal water currents occur in a lake, there will be velocity gra-
dients producing turbulence. In a stratified lake, the turbulent eddies will 
be dampened by the stratification. A formula for the damping of the tur-
bulence is often given by the following formula for the turbulent diffusion 
coefficient, Γ (Rodi, 1980):

(7.3.2)

Γ0 is the original turbulent diffusion, when not taking the stratification into 
account. Ri is the Richardson number, given by:

(7.3.3)

The formula is often used in numerical models (Olsen and Tesaker, 
1995; Olsen et. al. 1999; Olsen and Lysne, 2000)

Various values of the constants a and b are used by different reserach-
ers. Rodi (1980) recommends the values given by Munk and Anderson 
(1948):

α = -0.5 and β = 10.0, computing the diffusion for the velocity.
α = -1.5 and β = 3.33, computing the diffusion for other variables.

Γ Γ0 1 βRi+( )α
=

Ri
g
ρ
---

ρ∂
z∂

------

U∂
z∂

------- 
  2
---------------–=



Numerical Modelling and Hydraulics                                                                                                         93

Figure 7.4.1. Wind-
induced circulation in a 
stratified lake. The arrows 
show the direction of the 
velocity. Note this is a sta-
tionary situation.

Figure 7.4.2. Forces on a 
water body. The hydrostatic 
pressure is denoted p, L is 
the length of the reservoir, τ 
is the shear stress and H is 
the water depth.
Olsen and Lysne (2000), however, found better correspondence with 
measurements when using the values:   

α = -1.3 and β = 10.0, for all variables.

More advanced methods of taking the stratification into account when 
modelling turbulence is given by Rodi (1980).

7.4 Wind-induced circulation in stratified lakes

Water currents in a stratified lake will be influenced by the density varia-
tion in two ways: 

1. Vertical velocities will be dampened
2. Turbulence will be dampened

Looking at a deep stratified lake in the summer, where wind-induced cur-
rents occur, the circulation pattern given in Fig. 7.4.1 will emerge:

The slope of the water surface can be computed by looking at the forces 
on the water body, as given in Fig. 7.4.2:

The force from the wind is given as:

(7.4.1)

The force from the hydrostatic pressure difference is:

(7.4.2)

We define the average water depth as:

(7.4.3)

Wind

Thermocline

    pl  pr

τ

L
 Hl

 Hr

Fw τL=

Fpd
1
2
---ρgHl

2 1
2
---ρgHr

2
– ρg

Hr Hl+( )
2
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H
Hr Hl+( )
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Figure 7.4.3. Forces on  
the hypolimnion. The left 
side is denoted L, and the 
right side denoted R. The 
density difference between 
ρ1 and ρ2  is denoted ρ’. The 
pressure at the bed is 
denoted p. On the upper fig-
ure, p is equal to ρ1gH, 
where H is the water depth. 
The surface slope is given as: 

(7.4.4)

Combining this equation with Eq. 7.4.3 and Eq. 7.4.2, we obtain:

(7.4.5)

Setting the sum of the forces (Eq. 7.4.1 and 7.4.5) in the horizontal direc-
tion to zero, gives the following equation for the water surface slope:

(7.4.6)

The slope of the thermocline, I’, can be computed from looking at equilib-
rium of forces in the horizontal direction on the hypolimnion (Fig. 7.4.3)

The water below the thermocline is heavier than the water above. The 
density difference is denoted ρ’, and given by:

(7.4.7)

I
Hr Hl–

L
------------------=

Fpd ρ– gHLI=

I
τ

ρgH
-----------=

Thermocline

ρ1

ρ2

     p’l          p1,l             p1,r              p’r

Thermocline

ρ1

ρ2

     p’l               (p1,r-p1,l)           pr’

             hypolimnion

H

H’

Thermocline

ρ2

        (p’1,l-p’1,r)                    (p1,r-p1,l)           

τ = 0

ρ′ ρ2 ρ1–=



Numerical Modelling and Hydraulics                                                                                                         95
It is assumed that the shear stress between the epilimnion and the 
hypolimnion is negligible. The water flow direction above and below the 
thermocline is the same. 

Looking at the forces on the epilimnion only, the situation will be similar 
to the derivation of the water surface slope. The difference is that the 
water density is replaced by the density difference, ρ’, and the wind force 
is replaced by the pressure difference pr-pl. The force from the pressure 
difference becomes the same as for a non-stratified lake :

  (7.4.8)

The force from the density difference is the same as Eq. 7.4.5, only the 
density is replaced by the density difference, and the water depth is 
replaced with H’, the height of the thermocline.

(7.4.9)

Equilibrium of forces means the sum of the forces from Eq. 7.4.8 and 
7.4.9 are zero. 

 (7.4.10)

Assuming H/H’ can be approximated to be unity, the following equation 
is obtained:

(7.4.11)

The negative sign indicates that the thermocline slopes in the opposite 
direction of the lake water surface.

The density difference is much smaller than the water density itself, so 
the slope of the thermocline is orders of magnitude larger than the water 
surface slope. During strong winds it may happen that the slope 
becomes so large that the cold water below the thermocline reaches the 
water surface. 

7.5 Seiches

Assuming we have a situation like given in Fig. 7.4.1, and the wind 
speed suddenly drops to zero, the thermocline and the water surface will 
start to oscillate. Fig. 7.5.1 shows the movement:

Fpd pl pr–( )H ρ– 1gILH= =

Fdd ρ– ′gI′LH′=

Fpd Fdd+ 0 ρ– 1gILH ρ– ′gI′LH= =

I′ I–
ρ1

ρ′
-----=
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Figure 7.5.1. Surface and 
internal seiches in a strati-
fied lake. The thermocline 
is drawn with a line. The 
slope of the water surface is 
exaggerated compared to 
the slope of the thermocline.

Speculations:
Numerical experiments 
has shown that under spe-
cial conditions, an internal 
seiche may diffuse 
upwards to the water sur-
face. If this would be the 
case, a sudden upwelling 
of water to the water sur-
face would occur, with 
reasonably high horizontal 
velocity. Local observa-
tions of such phenomena 
in a lake with otherwise 
quiet water surface could 
be interpreted in imagina-
tive ways...
The movements of the water surface is called surface seiches. The 
movement of the thermocline is called internal seiches. 

In Fig. 7.5.1, the thermocline is drawn with a straight line. This will not be 
the case, as numerical and physical models shows that the water close 
to the thermocline moves more like a wave, as shown in Fig. 7.5.2:

The movement of the internal seiche is associated with considerable 
horizontal velocities at the thermocline. 

7.6 River-induced circulation and Coriolis acceleration

A river feeding water into a lake or a reservoir will create water currents 
even if there is no wind present. A particular case is an ice-covered lake, 
where this will be the dominant forcing mechanism for the circulation. If 
the lake is stratified, the current may form “plume” inside the lake. An 
example is given in Fig. 7.6.1, showing the velocity pattern close to the 
water surface in Lake Sperillen in Norway during winter. The plume fol-
lows the right (top) side of the lake, due to the Coriolis acceleration.

Figure 7.5.2. Movement of the thermo-
cline during an internal seiche. The 
upper figure shows the initial situation. 
The middle figure shows the thermocline 
some time after the wind has stopped. 
The lower figure shows the situation 
later.
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Fig. 7.6.1. Velocity vec-
tors close to the surface in 
Lake Sperillen, during the 
winter. The lake is then cov-
ered with ice. The river is 
flowing in from the right and 
out to the left. 
Coriolis

The effect of the earth’s rotation is most pronounced for large lakes with 
stratification. However, the effect may also be present in large non-strati-
fied lakes. 

The Coriolis acceleration affect the water movement by the following for-
mula:

(7.6.1)

T is the time it takes for one earth rotation, i.e. 24 hours or 86 400 sec., φ 
is the latitude of the lake and U is the water velocity. In the northern hem-
isphere, the acceleration will always be to the right. An example for a 
lake in southern Norway, the latitude is 60 degrees, and f will be 
1.26x10-4.

The formula for the Coriolis acceleration can be derived by looking at the 
centrifugal force on a particle with velocity Up, at the surface of the earth 
that has a velocity UE in the rotation:

          (7.6.2)

At the Equator, where the radius, R, is about 6 371 000 meters, the Earth 
velocity is about 460 m/s. Also for points further away from the Equator, 
the Earth rotation velocity will be much larger than the water velocity. 
The last term on the right side of Eq. 7.6.2 is therefore negligible. The 
first term on the right side is independent of the water velocity. It is actu-
ally a fixed acceleration, causing the gravity component to tilt slightly 
compared with the direction to the centre of the Earth. The second term 
on the right side of Eq. 7.6.2 is causing the Coriolis force. The Earth 
velocity at maximum radius is equal to the Earth circumference divided 
by the time to rotate one time, T. This would be 24 hours. The accelera-
tion is then: 

(7.6.3)

Comparing this formula with Eq. 7.6.1, the sinus of the latitude is miss-
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Fig. 7.6.2. Decompo-
sition of the Coriolis 
accelleration on the 
Earths surface.
ing. This is because we are only interested in the acceleration term in the 
direction normal to the gravity direction. This component will be zero at 
the Equator. 

Slope of water surface

For a straight channel, the water surface slope would tilt slightly due to 
the Coriolis acceleration. The cross-directional slope, Ic, would be equal 
to the ratio of the Coriolis acceleration to the gravity:

(7.6.4)

The velocity of the current is denoted U and f is the Coriolis factor. The 
bottom of the current will also get a cross-directional slope, Ib. Looking at 
the cross-directional balance of forces, similar to what was done for the 
thermocline, it is possible to derive a formula for Ib:

(7.6.5)

As previously, ρ is the water density, and ρ’ is the density difference 
between the water in the current and the water below.

7.7 Density currents

If the water flowing into the lake/reservoir has a different density than the 
lake water, a density current is formed. The density difference can be 
due to:

1. Temperature variations
2. Sediment concentration
3. Content of salt in sea water

Combinations of the effects are also observed. If the temperature causes 
the density of the inflowing water to be lower than in the lake, the current 
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Figure 7.7.1. Turbidity cur-
rent entering a reservoir. 
The plunge point is often 
visible at the water surface, 
as the river water contains 
more sediments and has a 
different colour than the 
water in the reservoir.

Figure 7.8.1. Water 
abstraction from a strati-
fied reservoir. The depth is 
H, the discharge is Q and d 
is the height of the layer with 
abstracted water. 
will move close to the water surface. If the density is higher than the lake 
water, the current will move along the lake bed. In a stratified lake, it is 
possible that the current may move down into the water body to a tem-
perature similar to the inflowing water. 

A density current caused by high sediment concentrations is called a 
turbidity current. The turbidity current can transport sediment a long 
way into the reservoir, and even cause deposits in front of an intake of a 
large reservoir. The process also redistributes sediments from the river 
mouth to the deeper part of the lake/reservoir. 

The sediment-laden river water often has a darker colour than the 
cleaner reservoir water. It is therefore sometimes possible to observe the 
plunge point at the water surface.

7.8 Intakes in stratified reservoirs

When water is abstracted from a linearly stratified reservoir, the situation 
given in Fig. 7.8.1 may occur. 

Only the water in a layer at the same level as the intake is abstracted. 
The thickness, d, of the layer for a two-dimensional situation with a line 
abstraction can be computed from:

(7.8.1)

where q is the water discharge/meter width, and k1 is an empirical con-
stant, between 3 and 5 (Steen and Stigebrandt, 1980). N is the Brunt-
Väisälä frequency, given by:

Dam

Intake

Reservoir

River                   Plunge point

ρ’   H
d     Q U

d k1
q
N
----=



Numerical Modelling and Hydraulics                                                                                                         100
(7.8.2)

If the water discharge is above a critical value, qc, then water will be 
abstracted from the whole depth. The following formula is used to find qc 
(Carstens, 1997):

(7.8.3)

Eq. 7.8.1 is derived theoretically from an idealized 2D situation. In prac-
tice and intake will be limited in width, and 3D effects will be important. 
Steen and Stigebrandt (1980) developed formulas for a 3D situation 
where the abstraction gate had a significant size, of width B and height 
h:

(7.8.4)

It was assumed that B was much smaller than the dam length and h was 
much smaller than the dam height. The constant, k3, was found by 
experiments to be 0.74 (Carstens, 1997) for a gate close to the bed or 
the water surface, and 1.2 for a gate midway between the water surface 
and the bed (Carstens, 1997; Steen and Stigebrandt, 1980). Steen and 
Stigebrandt (1980) also developed more complex formulas for the thick-
ness of the abstraction layer for cases when the outlet size was not rela-
tively small compared to the other dimensions. 

7.9 Problems

Problem 1. Thermocline

A lake with depth 100 meters has a thermocline 7 meters below the 
water surface. The temperature is 15 0C above the thermocline and 5 0C 
below it. A wind from the north lasts for five days. The wind speed is 15 
m/s. The lake is 5 km. long in the north-south direction. Compute the 
depth of the thermocline at the northern and southern side of the lake. 

Problem 2. Water intake

Water is taken from a reservoir to a treatment plant to be used for munic-
ipal water supply. The intake is located 10 meters below the water sur-
face, with a width of 2 meters and a height of 1 meter. The discharge is 2 
m3/s. The temperature gradient of the reservoir is 0.5 0C/m, and the tem-
perature at 10 meter is 11 degrees. A pollutant is spilled on the water 
surface. There is no wind at the time of spill, so on average for the whole 
lake, the pollutant is only mixed in the upper 1 meter layer. At the intake, 
water is abstracted from a layer with vertical magnitude Δh. Will this be 
so large that polluted water enters the intake?

N
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ρ
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dρ
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2

=

d k3
Q

2

B
2
hN

2
----------------
 
 
 

1
3
---

=



Numerical Modelling and Hydraulics                                                                                                         101

Some atomic weights in 
units grams/mol:

Hydrogen: 1
Carbon: 12
Nitrogen: 14
Oxygen: 16

The reaction coefficients, k, 
are often given in units 
1/day. Remember to convert 
this to 1/seconds, when 
using computer programs 
where this time step is used.
8. Water biology 

8.1 Introduction

Water quality in lakes and reservoirs is often of interest for engineering 
purposes. An example is determination of location of water intakes, to 
prevent excessive pollutants in the inflowing water. Sometimes algae 
accumulate on one side of a lake. What is the reason for the variation in 
the spatial distribution of the algal concentration? Another example is the 
assessment of the capacity of a lake/reservoir to receive waste water. 

The dispersion of the various components was discussed in Chapter 4 
and 5, predicting the variation of the concentration as a function of turbu-
lence, water currents etc. The variation of a component can be com-
puted solving the convection-diffusion equation of its concentration. 
However, the concentration of a component is also a function of bio-
chemical reactions. The biochemical reactions can also affect the varia-
tion of a variable. A toxic substance may change as a function of time 
due to for example sunlight. Or oxygen may be consumed by bacteria or 
generated by algae. These biochemical reactions are discussed in the 
following chapters.

8.2 Biochemical reactions

Stochiometry

Stochiometry is used to quantify the different components in a biological 
or chemical reaction. An example is the photosynthesis, where carbon 
dioxide and water are used to produce organic material and oxygen:

(8.2.1)

The balanced equation can be written:

(8.2.2)

The molecular weight of carbon is 12 g/mol and oxygen is 16 g/mol. The 
weight of a carbon dioxide molecule is then 44 g/mol. The weight of the 
oxygen molecule is 32 g/mol. So for example 44 grams of carbon dioxide 
will produce 32 grams of oxygen. 

Reaction kinetics

Reaction kinetics is used to describe how fast a biochemical process 
takes place. There are a number of different rate laws describing the 
processes, classified by the order of the kinetics:

Zero-order kinetics:

  or (8.2.3)

First-order kinetics:

CO2 H2O+ C6H12O6 O2+→

6CO2 6H2O+ C6H12O6 6O2+→

dc
dt
------ k–= c c0 kt–=
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The derivation of the integra

  separate var

Integrate on both sides: 

  which be

The constant, K, is found by

dc
dt
------ kc–=

dc
c

------ k dt–=

c c0e
kt–

=

  or (8.2.4)

Second-order kinetics:

  or (8.2.5)

The equations describe variations in only one variable. For some cases 
there are multiple water quality constituents. The change in one variable 
may be a function of the concentration of other variables. However, often 
there is a limiting variable determining which process is taking place. 
The reaction is then dependent on this variable.

Temperature dependency

Most biochemical processes depend on temperature. For example, algal 
growth will increase significantly when a lake is heated by the sun during 
summer. The following formula is often use to estimate the growth 
increase/decrease as a function of temperature, T:

(8.2.6)

The reaction rate at 20 oC, k20, is often used as a basis. The parameter θ 
is specific for the reaction. Typical values are slightly above unity. Some 
examples are given in Table 8.7.1. The processes in the table are further 
described in the following chapters.

Discretization

Biochemical reactions are included in the convection-diffusion equation 
when computing the dispersion of a water quality parameter. This is 
done by including the left side of Eq. 8.2.3-5 in the source term. If first-
order kinetics is used, the equation can be written: 

dc
dt
------ kc–= c c0e

kt–
=

dc
dt
------ kc

2
–= c c0

1
1 kc0t+
-------------------=

l version of for example Eq. 8.2.4 is as follows: 

iables:  

comes   or    

 the boundary condition c=c0 at t=0. This gives

dc
c

------ kdt–=

cln kt– K+= c e
kt– K+

=

k k20θ 20 T–( )
=
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In the spring of 1995 there 
was a large flood in the riv-
ers flowing into Lake Mjøsa 
in Norway. The flood caused 
extensive damage to infra-
structure. It was also feared 
it could lead to decreased 
quality of the water in the 
lake, which was used for 
water supply to the main cit-
ies in the area. This did not 
happen, as much of the pol-
luting compounds sorbed to 
sediments and deposited at 
the bottom of the lake.
(8.2.7)

When the equation is discretized, it becomes:

(8.2.8)

Vp is the volume of the cell. The last term on the right side is due to the 
biochemical reactions. Note that this term is negative, so that it is in prin-
ciple possible to get a negative concentration. This can lead to instabili-
ties in the solution and unphysical results. To avoid this, the same 
procedure as in Chapter 5.7 can be used. The equation is then written: 

 (8.2.9)

In this way, negative concentrations will be avoided.

The time term can also be added, similarly as described in Chapter 5.7.

8.3 Toxic compounds

Toxic compounds are chemical substances not naturally occurring in the 
river/lake water, causing a hazard to humans and animals drinking the 
water.   

Individual types of toxics will not be described here, and the dangerous 
concentrations need to be determined for each component. But a few of 
the processes affecting the toxic concentration are discussed.

Sorption

Toxic substances often attach to organic and inorganic sediments, sus-
pended in the water. When the sediments settle, some of the toxic sub-
stance will be removed. The total concentration of toxics, c, in a water 
body is therefore the sum of the dissolved toxic concentration, cd, and 
the concentration attached to particles, cp. The fractions of the two com-
ponents as a function of the total concentration is given by:

(8.3.1)

(8.3.2)

The index d denotes the dissolved fraction and p denotes the fraction 
attached to the suspended particles. The particle concentration is 
denoted cs. The partition coefficient, Kd, may range between 0.0001 and 
1000. The value depends on the type of toxic and the composition of the 
suspended particles. There exist empirical formulas for Kd for some 
types of toxics/sediments. Otherwise, the coefficient must be determined 
by a laboratory analysis.

Ui
∂c
∂xi
------- ∂

∂xi
------- Γ ∂c

∂xi
------- 

  kc–=
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p

awcw aece ancn ascs kcpVp–+ + +=
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c
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Translation to Norwegian:

Biodegradation: Biologisk     
nedbrytning
Partition coefficient:
Partisjonskoeffisient
Reaeration: Lufting
Sorption: Sorpsjon
Photolysis

Sunlight may cause toxic chemicals to undergo a transformation to other 
compounds. The decrease in concentration is given by first-order kinet-
ics (Eq. 8.2.4). The reaction rate, kp, is a function of the specific chemical 
and the sunlight. There exist tables for kp at the water surface. But as the 
light penetrates the water body, it will be dampened. This process must 
be taken into account when evaluating the effect of the photolysis. The 
computation of the irradiance damping must also take into account that 
each photolysis reaction requires light at a specific wavelength. The 
damping computation must be specific for the particular light frequency.

Hydrolysis

Hydrolysis is a transformation of the toxic to other components, usually 
by acid or bases in the water. The reaction can be computed by first-
order kinetics, and the reaction rate, kp, is usually in the order of 10-7 to 
0.1/day. It will be a function of the pH of the water and the chemical com-
position of the toxic.

Biodegradation

In biodegradation processes, toxic substances are reduced to other 
compounds by organic material. Usually, different types of bacteria are 
involved in the process.

8.4 Limnological classifications

Depending on the nutrition inflow to a lake, there may be more or less 
organic material and processes. A lake with little nutrients and organic 
material is called oligotrophic. If the nutrition inflow is high and large 
amount of organic material is present in the lake, it is called eutrophic. 
The state in between oligotrophic and eutrophic is called mesotrophic. 
A quantitative distinction between the types are often related to the 
phosphorous concentration. The mesotropic lake has a concentration 
between 10 and 30 mg/l. Lower phosphorous concentrations are found 
in oligotrophic lakes, and higher concentrations in euthropic lakes.

The water body of a lake can be divided in several zones, depending on 
the biology of the lake. The littoral zone is the shallow part of the lake 
close to land, where plants may grow. Classification also depends on the 
amount of light penetrating the water body. Since the algae requires light 
for photosynthesis, the production of organic components only take part 
in the upper zone. This is called the euphotic zone. The aphotic zone 
is below. The light penetration is here so small that photosynthesis is not 
possible, and only decomposition processes take place.

Water quality is defined from the concentration of various components in 
the water. For example, the water should have above a certain amount 
of oxygen, and the concentration of toxic components should be below a 
threshold value. The component is then a water quality indicator. Cer-
tain species of algae has also been used for this purpose. The water 
engineer is faced with the question of determining the concentration of 
the various water quality constituents.

More details on the typical processes and water quality parameters in a 
lake is given in the next chapter.
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Note that this equation is 
independent of the con-
centration of bacteria/
algae.
8.5 The nutrient cycle

Most computer programs for water quality models the nutrient cycle in a 
river/lake using oxygen, phosphorous, nitrogen and algae/bacteria. Fig. 
8.5.1 shows a schematic view of the components involved:

P is phosphorous, N is nitrogen and the oxygen is dissolved in the water. 

Oxygen processes

Oxygen dissolved in the water is seen as a main indicator of water qual-
ity. The oxygen concentration is often measured as a fraction of the satu-
ration concentration, or a saturation concentration deficit. Clean water 
will usually have high oxygen concentrations, or close to zero concentra-
tion deficit. 

One of the most important processes for life is the photosynthesis. The 
process transforms carbon dioxide and water to organic substances and 
oxygen. In water, the process takes place in chlorophyll of the algae. 
Algal processes will be further discussed in Chapter 8.7. 

Oxygen is used by plants and bacteria in respiration and consumption of 
nutrients. Usually, there are many types of plants and nutrients, with dif-
ferent types processes taking place. It is therefore difficult to derive ana-
lytical formulas for the processes. Instead, an empirical approach is 
used. A sample is taken from the water, and the oxygen consumption is 
measured in the laboratory as a Biochemical Oxygen Demand (BOD). 
The BOD will be dependent on many factors, and empirical coefficients 
are required when modelling the process. Usually, the oxygen demand is 
from organic material. Since this is based on carbon, the term CBOD is 
also used. BOD for Nitrogen processes is termed NBOD, and this will be 
discussed later. 

The consumption of nutrients by bacteria/algae can be described by first-
order kinetics:

(8.5.1)

Algae  Oxygen

Org. P           Diss. P         Org. N         NH3             NO2           NO3

CBOD

Settling

Settling

     Air

Figure 8.5.1. A model of the components in a river/lake

dL
dt
------ kdL–=
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The development of CFD 
models enables the estima-
tion of turbulence close to 
the water surface. Future 
reaeration formulas will 
probably be based directly 
on these turbulence param-
eters: the turbulent kinetic 
energy or the eddy-viscosity.
L is the concentration of nutrients, and kd is an empirical reaction coeffi-
cient.

If dissolved oxygen is consumed completely from the water, anaerobic 
conditions occur. Then new processes with different types of bacteria 
will take place. Such processes may create toxic substances and fish 
deaths. It is therefore important that an oxygen concentration above zero 
is maintained in rivers and reservoirs/lakes.

The bacteria/algae consuming the oxygen can be floating in the water, or 
it can be attached to sediments at the river/lake bed. In the last case, the 
term Sediment Oxygen Demand (SOD) is often used instead of BOD. 
Chapra (1997) developed relatively complex algorithms to compute 
SOD.

The oxygen in the air above the water surface will be able to replenish 
the river/lake water if the oxygen concentration, o, is below the satura-
tion concentration os. A large number of formulas have been made to 
quantitatively determine the reaeration. The general formula is given as:

(8.5.2)

The oxygen saturation concentration is denoted os. This is the maximum 
oxygen concentration in the water. If the concentration goes above this 
value, gas bubbles are formed, and the oxygen disappears to the atmos-
phere. The oxygen saturation concentration depends on:

- water temperature
- salinity
- altitude

The value of the oxygen saturation concentration will be in the order of 
10 mg/liter (Chapra, 1997). Often, the oxygen deficit, D, is modelled 
instead, where D=os - o. 

The reaeration coefficient, ka depends on the oxygen flux through the 
water surface film. It is also influenced by the oxygen mixing by turbu-
lence below the surface. The present empirical formulas contain indirect 
parameters of the turbulent mixing, for example the water velocity. A for-
mula for the reaeration coefficient for a river is given by O’Connor and 
Dobbins (1958):

(8.5.3) 

The formula is not dimensionless, and U is given in m/s and h is the 
water depth in meters. The coefficient ka is given in units day-1.

For lakes, an empirical formula for ka, has been developed by Broecker 
et al. (1978). 

(8.5.4)

Uw is the wind speed 10 meters above the water surface in m/s.

do
dt
------ ka os o–( )=

ka 3.93
U

0.5

h
1.5

----------=

ka

0.864Uw

h
---------------------=
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NH4
+ = ammonium

NH3
 = ammonia
There exist a large number of other empirical formulas for the reaeration 
process.

Nitrogen

The source of nitrogen in the water is usually organic material. The 
material decomposes in an ammonification process, leading to forma-
tion of ammonium (NH4

+). The ammonium can react with dissolved oxy-

gen in a nitrification process to form nitrite (NO2
-). The nitritification 

process can further transform the nitrite to nitrate (NO3
-). Since the nitri-

ficaion process uses oxygen, the process has a nitrogen oxygen 
demand (NBOD). If not, or only small amounts of dissolved oxygen is 
present, a denitrification process can take place. The nitrate is then 
transformed to nitrite and to nitrogen in gaseous form. The nitrogen gas 
may be lost to the atmosphere.   

There are several implications of the processes on the water quality:

1. If nitrogen is the limiting nutrient for organic growth, abundant nitrogen 
may cause increased eutrophication.

2. High concentrations of nitrate (above 10mgN/l) in drinking waters can 
cause disease for very young children.

3. Dissolved ammonia may form ammonia gas (NH3), which may be 
toxic to fish. This only happens at high temperatures and high pH in the 
water. (above 200 C and pH above 9).

The nitrogen processes can be modelled by the equations given below, 
using the following subscripts: o=organic, a=ammonium, i=nitrite and 
n=nitrate.

(8.5.5)

(8.5.6)

(8.5.7)

(8.5.8)

Note that the stochiometry coefficients are not included. The equations 
can be solved analytically for a simple system of one well-mixed lake/
reservoir. Often, an equation for dissolved oxygen is solved simultane-
ously. 

Phosphorous

Phosphorous is usually the limiting nutrient for plant growth in fresh 
water. The growth process is then only a function of the phosphorous 
concentration. The phosphorous may be dissolved in the water or it 
may be present in organic material. The organic material consume the 
dissolved phosphorous and then settle to the bottom of the lake/river. 
These processes will decrease the concentration of dissolved phospho-
rous in the water. However, when the organic material decomposes, the 
phosphorous may again be released and dissolved in the water. 

td
d No( ) ko a→ No–=

td
d Na( ) ko a→ No ka i→ Na–=

td
d Ni( ) ka i→ Na ki n→ Ni–=

td
d Nn( ) ki n→ Ni=
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Process

Algal growth

Algal respiration rate

BOD decay

Organic nitrogen decay
Formulas for depletion of dissolved phosphorous is derived from growth 
formula for biological material. Stochiometry is used to determine how 
much the phosphorous concentration is reduced as a function of the 
organic growth. 

(8.5.9)

(8.5.10)

Porganic is the organic phosphorous in the algae, PO4 is the dissolved 
phosphorous. The decomposition rate of organic phosphorous is 
denoted kop, and k is the algae growth factor. The algae concentration is 
denoted cA, and the fraction of phosphorous in the algae is α.

In many lakes there is relatively little phosphorous occurring naturally, 
leading to small concentrations of organic material. Over the last dec-
ades there has been an increase in phosphorous inflow into many lakes 
in Europe. Often, fertilization from agriculture is the cause. The 
increased phosphorous loading leads to accelerated growth of organic 
material. This eutrophication has negative effects on the water quality.

8.6 QUAL2E

The QUAL2E program is made by the US Environmental Protection 
Agency. It is designed to model water quality in rivers in one dimension. 
The hydraulic computation is based on a steady calculation. The convec-
tion-diffusion equation is solved for a number of water quality parameter. 
Biological reactions are included in the equations, together with interac-
tion between the parameters. 

The program models a number of water quality variables: Temperature is 
modelled with surface fluxes as given in Chapter 7.3. Algae is modelled, 
including growth, predation, settling and scour. The cycles of nitrogen, 
phosphorous, carbonaceous BOD and oxygen are modelled, according 
to the models described in Chapter 8.5. 

The program is freeware, and can be downloaded from the Internet, 
including user’s manuals. A Windows user interface is included. Table 
8.6.1 gives default values of important input parameters:

Table 8.6.1 Parameters used in QUAL2E

Equation
number

Reaction
rate name

Default 
reaction 

rate (day-

1)

Max-min. 
reaction 

rate (day-1)
Temperature 
coefficient θ

8.7.7 k 2.5 1.0-3.0 1.047

0.005 0.005-0.5 1.047

8.5.1 kd 0.0 0.0-10.0 1.047

8.5.5+6 kNO>NH4 0.0 0.0-10.0 1.047

td
d Porganic( ) kopPorganic–=

td
d PO4( ) kopPorganic αkcA–=
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Organic nitrogen settling

Ammonia oxidation

Nitrite oxidation

Organic phosphorous decay

Process

The formula given by Krom-
kamp and Walsby was 
developed from data using 
an algae from the lake 
Gjersjøen in Norway
8.7 Phytoplankton

The most important types of plankton for water quality is free-flowing 
algae. Algae are plants with one or more cells, living in water. Two 
groups of algae exist: 

- periphyton: algae attached to the river/lake bed
- phytoplankton: free flowing algae

The most common species of phytoplankton in freshwater can be classi-
fied in three main groups: 

- Cyanobacteria
- Flagellates 
- Diatoms

Cyanobacteria often have gas vesicles, variable in size. The buoyancy 
of the algae can thereby be changed and vertical movement take place. 
The main process in the algae is photosynthesis, and an appropriate 
amount of light is necessary. If too little light is present, the algae will 
move toward the water surface. And if the light is too strong the algae 
will want to move downwards, where the turbidity of the water cause 
decreased light intensity. The change in phytoplankton concentration 
may be due to the rise/fall velocity together with wind-induced currents 
and turbulence. Another process is algal growth and predation by zoo 
plankton.

Rise/sink velocity

Kromkamp and Walsby (1990) developed formulas for cyanobacteria 
buoyancy based on laboratory experiments:

(8.7.1)

ρa is the algae density, Δt is the time step and k1, k2, k3 and K are con-
stants. I24 is the average irradiance over the last 24 hours. I is the irradi-
ance, with maximum value at the water surface, and decreasing values 
downward in the water body, as shading occur. Bindloss (1976) investi-
gated the damping of the irradiance for lakes in the UK, and found the 
following relationship to compute the specific light transmission coeffi-
cient, kl:

8.5.5 σ4 0.0 0.0-10.0 1.024

8.5.6+7 kNH4>NO2 0.0 0.0-10.0 1.083

8.5.7+8 kNO2>NO3 2.0 0.0-10.0 1.047

8.5.9+10 kop 0.0 0.0-10.0 1.047

Equation
number

Reaction
rate name

Default 
reaction 

rate (day-

1)

Max-min. 
reaction 

rate (day-1)
Temperature 
coefficient θ

ρa 1, ρa 0, Δt k1
I

I K+
------------ k2I24– k3– 

 +=



Numerical Modelling and Hydraulics                                                                                                         110
(8.7.2)

where c is the algal concentration. The irradiance is dampened by a fac-
tor f, given by the following formula:

(8.7.3)

The summation is over all layers with magnitude Δz from the surface 
down to the level y.

The fall/rise velocity, w, of the algae is calculated from Stoke's equation:

(8.7.4)

where ρa and ρw is the algal and water density, and ν is the kinematic 
water viscosity, evaluated as:

(8.7.5)

where T is the temperature in degrees Centigrade.

The flagellates also seek optimum light intensity. Instead of changing 
their buoyancy, the flagellates have flagelles, enabling movement. This 
is similar to fins on a fish, but much lower velocities are produced. The 
following formula is often used for flagellates:

(8.7.6)

I is the actual irradiance, Iopt is the optimum irradiance, Iref is a reference 
irradiance and wmax is the maximum rise/sink velocity for the flagellate. 

The maximum rise/sink velocity of phytoplankton are in the order of one 
meter/hour. 

The Diatoms have a specific weight slightly higher than water, giving a 
constant fall velocity. The density can not be changed, and the diatoms 
do not have flagelles. The only way to move diatoms upwards is by tur-
bulence. 

The size of the phytoplankton are often in the order of micrometer. A 
microscope is necessary to identify the different species. Certain types 
of cyanobacteria - Microcystis - form groups or colonies. The rise/sink 
velocity is a function of the algae buoyancy and the group diameter. A 
larger group will thereby get a much higher fall/rise velocity, giving 
increased efficiency in search for optimum light. Groups of up to 2 mm in 
size have been observed. 

Growth

Time series of phytoplankton concentrations in a lake show variations 
over the year. Also, the type of algae changes. Diatoms may be domi-
nant in the spring, followed by cyanobacteria in the summer. This all 

kl 0.0086c 0.69+=

f e
klΔz

y
=

w d
2
g

ρw ρa–

18ρwν
------------------=

ν 10
6–
e

0.55234 0.026668T–
=

w wmax

Iopt I–

Iref
---------------- 
 =



Numerical Modelling and Hydraulics                                                                                                         111
depends on temperature, nutrients, shading, grazing by zoo plankton 
etc. 

The algal growth can be computed by use of first-order kinetics:

(8.7.7)

The growth rate coefficient, k, may be around 1.0/day for optimum condi-
tions. The biomass will then increase by 200 % in one day, and by a fac-
tor 1000 in one week. Usually, optimum conditions do not exist, as the 
algae need several nutrients to achieve maximum growth. The limiting 
nutrient for Cyanobacteria and Flagellates in freshwater is most often 
phosphorous. Silica is often the limiting nutrient for Diatoms.

If sufficient amount of nutrients are present, the growth can be limited by 
light. Reynolds (1984) found the following formula to estimate the growth 
coefficient in lakes in the UK:

(8.7.8)

The damping factor, f, is given by Eq. 8.4.3, and a and b are constants 
(0.4 and 9.0) as found by Reynolds (1984).

Modelling of phytoplankton

Phytoplankton can be computed in models having from zero to three 
spatial dimensions. A zero-dimensional model assumes complete mixing 
in the lake/reservoir, and predicts algae concentration over time. One-
dimensional models are used for rivers and sometimes for lakes. Then 
horizontal layers are often used, and complete mixing within each layer 
is assumed. Three-dimensional CFD models have been used to predict 
spatial variation of algae in lakes (Hedger et. al. 2000) and reservoirs 
(Olsen et. al. 2000). The CFD model predicts velocities in all spatial 
directions on a three-dimensional grid. Wind-induced circulation can be 
modelled, together with effects of inflowing/outflowing water. The con-
vection-diffusion equation for algae concentration can be solved includ-
ing sink/source terms for algal growth and settling/rise velocities. 
Nutrients, light and temperature can be modelled simultaneously in time-
dependent calculations, enabling modelling of most of the important 
processes affecting the algae.

8.8 Problems 

Problem 1. Completely mixed lake:

A lake with volume 1 million m3 has received phosphorous from a sew-
age plant for several years, with an amount of 2000 kg/day. Assume a 
loss rate of 0.1/day, and compute the average phosphorous concentra-
tion in the lake. 

One day an improvement of the sewage treatment plant was made, 
causing the loading to decrease to 300 kg/day. How long time will it take 
before the phosphorus concentration is below 20 % of the original value? 

Problem 2. The Streeter-Phelps equations

In 1925, a study of the water quality in the Ohio river in the USA was 

c c0e
kt

=

k a 1 e

f
b
---–

–
 
 
 

=
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P

Organic nitr

Ammonium

Nitrite oxida
published by H. W. Streeter and Earle B. Phelps. Their paper was a land-
mark for water quality modelling. Using first-order kinetics, they modelled 
BOD and the oxygen deficit (DO) in the water as a function of sewage 
released to the river. The following formulas were used:

where D is the oxygen deficit: os-o. The concentration of BOD is denoted 
L, kd is a reaction coefficient for consumption of oxygen and ka is a reai-
ration coefficient. The parameter roc is the stochiometry coefficients for 
how much oxygen is consumed for each unit of BOD.  Assume a value 
of 0.1 for the current problem.

Solve the equations using a spreadsheet for a 100 km long river with a 
water discharge of 100 m3/s, where the upstream sewage outflow is 30 
kg/s. Present longitudinal profiles of BOD and oxygen concentration for 
a steady situation. Assume kd = 0.8 day-1. The river is 2 meters deep 
and 200 meters wide.

Compare the results with the analytical solutions of the equations:

Problem 3. The nitrogen cycle

Use a spreadsheet to compute the variation over time of various forms of 
nitrogen in a well-mixed lake, according to Eq. 8.5.5-8.5.8. Use the reac-
tion rates and initial concentrations given in Table 8.8.1.

Table 8.8.1 Parameters for problem 3

Problem 4. Stratified lake

A 22 meter deep lake is thermally stratified, with a 1 meter thick thermo-

rocess
Reaction
rate name

Reaction 

rate (day-1)
Variable

Initial 
conc. 

ogen decay kNO>NH4 0.15 Organic N 0.008

 oxidation kNH4>NO2 0.15 Nitrite 0.0

tion kNO2>NO3 0.5 Nitrate 0.0

Ammonium 0.008
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dt
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cline 7-8 meters below the water surface. It is assumed that the water on 
both sides of the thermocline is well-mixed, and the mixing through the 
thermocline is according to a diffusion coefficient, Γ,  equal to 1.3x10-2 

m2/s. 

Initially, the lake is fully saturated with oxygen. Assume an oxygen con-
centration of 9 mg/l. It is assumed that the wind mixes oxygen into the 
water, so the water above the thermocline stays saturated with oxygen. 
A the lake bottom, there is a sediment oxygen demand of 0.3 (m2day)-1. 
What is the concentration of oxygen below the thermocline after a long 
time? 
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The picture shows er
hydraulic machinery:
blades leading the w
towards the turbine. 
N. Olsen.
9. Sediment transport

9.1 Introduction

Sediments are small particles, like sand, gravel, clay and silt. The water 
in a river has a natural capacity of transporting sediments, given the 
velocity, depth, sediment characteristics etc. Man-made structures in a 
river may change the sediment transport capacity over a longer part of 
the river, or locally. Erosion may take place in connection with structures, 
such as bridges, flood protection works etc. The hydraulic engineer has 
to be able to assess potential scour problems. During a flood, the risk for 
erosion damages is at its highest. 

Sediments cause many problems when constructing hydropower plants 
and irrigation projects in tropical countries. Deposition and filling of reser-
voirs is one problem, and the water intake has to be designed for han-
dling the sediments. The sediments reaching the water turbine may 
cause wear on the components, as shown in the picture below. 

In recent years, the topic of polluted sediments has received increased 
interest. Organic and toxic substances may attach to inorganic sediment 
particles and affect the water quality. Erosion of old polluted sediments 
may create a hazard. Sediments also affects the natural biochemistry of 
shallow lakes. 

The origin of sediments vary according to different climates. In tropical 
countries, rock decompose naturally. Water in form of rain and tempera-
ture fluctuations, together with chemical reactions cause cracks in the 
rock. The weathering cause a layer of particles to be formed above the 
solid rock. The particles close to the surface have the longest exposure 
to weathering, and have the smallest grain sizes. Larger stones are 
formed closer to the bedrock. Over time, the finer particles are removed 
by rain, causing erosion of the rock. The process is relatively slow, as 
vegetation cover prevents erosion from taking place. Where man 
removes the vegetation, there may be accelerated erosion.

The sediments are transported by the rivers and streams through the 
catchment. The annual sediment transport in a river, divided by its catch-
ment area is called sediment yield. Typical numbers for tropical countries 

osion on 
 the 
ater 
Photo: 
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The picture on the 
right is taken from a 
volcano in Costa 
Rica. The fine mate-
rial of the volcano lies 
on steep slopes. It is 
relatively unprotected 
by vegetation. The 
rain fall then causes 
relatively extreme 
erosion rates. Such 
areas often have gul-
lies, as shown on the 
picture. Photo: N. 
Olsen.

Sediment yield
are around 100-2000 tons/km2/year.

In some countries, like Norway, the geology is very much influenced by 
the ice-age. The glaciers removed the upper layer with soil, leaving solid 
bedrock for a large part of many catchments. The sediment yield is 
therefore much lower, almost zero many places. The main sediment 
source in Norway is from the glaciers. 
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Fig. 9.2.1 Forces on a 
particle in a stream 

The density of a sediment 
particle is often set to 2.65 
times the water density
9.2 Erosion

The initial step to the science of sediment transport in a river is looking at 
forces on a sediment particle resting on the bed. The purpose is to find a 
method for determining when the particle will be eroded. There are four 
forces influencing the stability of the particle (Fig. 9.2.1) resting on a bed 
where the water has a velocity U.

- Gravity: G
- Drag: D
- Lift: L
- Friction: F

Assuming the particle has diameter d, the forces can be written:

(9.2.1)

(9.2.2)

We have here assumed a wide channel, where the hydraulic radius is 
approximately equal to the water depth.

(9.2.3)

The friction force, F, is a function of the force pushing the particle down-
wards, multiplied with a friction coefficient. This friction coefficient is the 
same as tangens to the angle of repose of the material, α. 

(9.2.4)

Some constants are used: k1 for the shape factor of the particle, k2 is a 
drag coefficient and CL is a lift coefficient. The critical shear stress on the 
bed for movement of a particle is denoted τc.

Equilibrium of forces along the direction of the bed gives:

(9.2.5)

Using Eq. 9.2.4 and 9.2.2, this gives

(9.2.6)

The equation is solved with respect to the particle diameter:

(9.2.7)
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Fig. 9.2.2 Shields graph, 
giving the critical shear 
stress for movement of a 
sediment particle

τ*=
τ

g ρs ρw–( )d
-----------------------------

Cohesive sediments 
under 0.1 mm
The parameter, τ*, was found experimentally by Shields (1937), and can 
be taken from Fig. 9.2.2:

The value on the horizontal axis is the particle Reynolds number, given 
by:

(9.2.8)

The viscosity of water is denoted ν, d is the particle diameter, u* is the 
shear velocity and τ is the shear stress on the bed.

Shields graph can be used in two ways: If the bed shear stress, τ, in a 
river is known, Eq. 9.2.7 can be used to determine the stone size that will 
not be eroded. Or if the particle size on the bed is known, Eq. 9.2.7 can 
be used to compute the critical shear stress for movement of this parti-
cle. In both cases, Eq. 9.2.7 is used, where the parameter τ* is found by 
Fig. 9.2.2.

If the particle is very small, under 0.1 mm, there are also electrochemical 
forces occurring. The sediments are then said to be cohesive. The criti-
cal shear stress then depend on the chemical composition of the sedi-
ments and the water. 

Example: A channel with water depth 2 meters and a slope of 1/1000 is 
covered with stones of size 0.03 m. Will the stones be eroded or not?

First, the bed shear is computed:

 Then the particle Reynolds number is computed. 

The Shields diagram gives the Shields coefficient as 0.06. The critical 
shear stress for the particle is then: 
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Critical shear for sloping 
banks

Plan view

A very good handbook for 
design of scour protection 
works in Norwegian is writ-
ten by Fergus et. al. (2010).
We see that the critical shear stress for the particle is above the actual 
shear stress on the bed. The particle will therefore not be eroded.

Sloping bed

The decrease, K, in critical shear stress for the sediment particles as a 
function of the sloping bed was given by Brooks (1963): 

     (9.2.9)

The angle between the flow direction and the channel direction is 
denoted α. The slope angle is denoted φ and θ is a slope parameter. The 
factor K is calculated and multiplied with the critical shear stress for a 
horizontal surface to give the effective critical shear stress for a sediment 
particle.

Looking at the bank of a straight channel, where the water velocity is 
aligned with the channel direction, α is zero. Eq. 9.2.9 is then simplified 
to:

(9.2.10)

The slope parameter, θ is slightly higher than the angle of repose for the 
material (Lysne, 1969). A value of 50 degrees was used by Olsen and 
Kjellesvig (1999) computing bed movements in a sand trap. 

More recently, Dey (2003) developed another formula for K:

(9.2.11)

The angles φ and α are here not defined in the same way as Brooks. The 
angle α is the bed slope normal to the direction of the velocity vector. 
While the angle φ is the bed slope in the direction of the velocity vector. 
Bihs and Olsen (2011) obtained fairly good results using this formula to 
compute local scour around an abutement in a channel.
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Fig. 9.2.3. Plan view (left) and cross-section (right) for explana-
tion of the angles α and φ in the formula for the decrease of the 
critical shear stress on the bed.
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Fig. 9.3.1 Fall
quartz sphere
The horizontal
diameter of the
and the vertica
fall velocity

Figure 9.3.2. The vertical 
distribution of sediment con-
centration for some chosen 
values of z
9.3 Suspended sediments and bed load

When the bed shear stress exceeds the critical value for the bed parti-
cles, there will be a sediment transport in the river. The particles will roll 
along the bed or jump up into the flow. The latter process is called salta-
tion. The length of the jump will depend on the fall velocity of the parti-
cles. Fig. 9.3.1 gives the fall velocity for quartz spheres at 20 oC. 

The sediments will move close to the bed or in suspension, depending 
on the particle size and the turbulence in the water. The Hunter Rouse 
parameter (Eq. 9.3.1) is often used to determine the vertical distribution 
of the sediment concentration profile:

(9.3.1)

The fall velocity of the particles is denoted w, κ is a constant equal to 0.4 
and u* is the shear velocity. High values of z indicates the fall velocity is 
high compared with the turbulence. The sediments will then move close 
to the bed. Low values of z indicates high amount of turbulence com-
pared with the fall velocity, and the distribution becomes more uniform. 
Hunter Rouse also developed formulas for the vertical distribution of the 
concentration, c(y):

(9.3.2)

The water depth is denoted h, y is the distance from the bed and a is the 
distance from the bed where the reference concentration, ca, is taken. 
Often a is set to 0.05h. The vertical distribution of sediment concentra-
tion for some values of z is given in Fig. 9.3.2, by using Eq. 9.3.2.

Sediment transport capacity

The river will have a certain sediment transport capacity, given its 
hydraulic characteristics and the sediment particle size. Supplying more 
sediments than the transport capacity leads to sedimentation, even if the 
critical shear stress for the particles is exceeded. Less available sedi-
ment than the transport capacity leads to erosion.
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Ralph A. Bagnold did
most of his sediment
research on sand trans-
ported by the wind. His ini-
tial field work was done in
the desert of North-Africa.
When the second world
war broke out, his knowl-
edge of the desert was
used by a special regi-
ment in the allied forces in
Egypt, that he com-
manded (Bagnold, 1990).

Hans Albert Einstein
was son of the famous
Albert Einstein, the
founder of the theory of
relativity. One day while
Hans Albert was at univer-
sity, Einstein senior asked
his son what he intended
to choose as the topic for
his research. He then
answered the science of
sediment transport. The
father replied that he also
thought of this when he
was young, but he consid-
ered it to be too difficult. 
Initial studies of sediment transport was done by Bagnold (1973), looking 
as sand transported by wind in the desert. Bagnold divided the transport 
into two modes: Bed load and suspended load. The bed load rolled 
along the ground, and the suspended load was transported in the air. For 
some reason, the same approach was used in water. The problem is that 
there is no clear definition of the difference between the two transport 
modes, agreed by most researchers. Some definitions are:

1. According to Einstein

Hans Albert Einstein, was a prominent researcher on sediment trans-
port. According to him, the bed load is transported in a distance two par-
ticle diameters from the bed, as the transport mode was by sliding or 
rolling. 

2. According to van Rijn

Van Rijn started from Bagnold’s approach, and derived formulas for how 
far the bed load particles would jump up into the flow. This distance is far 
greater than predicted by Einstein’s approach

3. According to measurements

Sediment transport in a river is often determined by measurements. A 
water bottle is lowered into the river, and water with sediments is 
extracted. The sediment concentration is determined in a laboratory. The 
water bottle is not able to reach all the way down to the bed, so there will 
be an unmeasured zone 2-10 cm from the bed. Often the measured sed-
iment will be denoted suspended load, and the unmeasured load 
denoted bed load.

4. According to Hunter Rouse’s example

Because Hunter Rouse showed an example where the reference level 
for the concentration was 5% of the water depth, some people assume 
the suspended load is above this level and the bed load is below. 

As the definition of bed load and suspended load is not clear, it is neces-
sary for the engineer to require further specification of the definition 
when using sediment transport data where the terms are used. 

9.4 1D sediment transport formulas

There exist a large number of sediment transport formulas. Some of the 
formulas are developed for bed load, and some for total load. The total 
load is then the sum of the suspended load and bed load. All formulas 
contain empirical constants, so the quality of the formula depend on the 
data set used to calibrate the constants. In other words, some formulas 
work well for steep rivers, and some for rivers with smaller slopes, finer 
sediments etc. The formulas give very different result for the same case, 
and there is often an order of magnitude between lowest and highest 
value. It is therefore difficult to know which formula to use. Different 
researchers also have varying opinions and preferences as to what for-
mula to use. 

The formulas can be divided in two groups: Bedload formulas and total 
load formulas. The bedload formulas are developed for data sets where 
only bedload occur. When used in situations where the sediment trans-
port is mainly suspended load, the formulas may give very inaccurate 
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Sediment transport 
formulas:

Engelund/Hansen
Danish researchers looking 
at rivers with relatively fine 
sediments and mild energy 
gradient.

Ackers&White
British researchers, using 
data from 925 individual 
sediment transport experi-
ments to find the constants 
in their equation.

Mayer-Peter&Muller
Swiss researchers, working 
mostly on rivers with steep 
slopes, where most of the 
material moved close to the 
bed.
results. The total load formulas should work for both modes of transport.
Note that a bed load formula will not predict the bed load in a situation 
where there is a combination of bed load and suspended load. It will pre-
dict the total load in a situation where most of the sediments move as 
bed load. Which is not the same.

Commonly used formulas for total load are:

Engelund/Hansen’s (1967) formula:

(9.4.1)

The sediment transport, qs, is given in kg/s pr. m width. U is the velocity, 
ρs is the density of the sediments, ρw is the density of the water, τ is the 
shear stress on the bed, g is the acceleration of gravity and d50 is the 
average sediment diameter. This version of the formula works in the SI 
system of units. 

Note that the shear stress term in the formula is divided by the critical 
shear stress. The critical shear stress is not subtracted from the actual 
shear stress. This means that the formula will give a sediment transport 
capacity also when the sher stress is lower than the critical shear stress 
for movement of a particle. 

The Ackers&White (1973) formula requires five steps, given in the fol-
lowing. Note that the logarithm in the function has base 10, log10.

1. Compute a dimensionless particle size:

(9.4.2)

For uniform grain sizes, the mean particle diameter, d, is used. For 
graded sediments, the d35 value is used.

2. Compute four parameters, m, n, A and C, to be used later:

if Dgr > 60, the particle sizes are said to be coarse:

      n = 0.0
      A = 0.17
      m = 1.5 (9.4.3)
      C = 0.025

if Dgr is less than 60, but larger than 1, the sediments are medium sized:

      n = 1.0 - 0.56 log Dgr
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Mayer-Peter&Muller’s for-
mula for bed load

Which formula to use? 
(9.4.4)

if Dgr is less than 1, the sediments are under 0.04 mm. It is assumed that 
cohesive forces may occur, making it difficult to predict the transport 
capacity. However, the transport capacity is then usually much larger 
than what is available for the river, so the sediment load is limited by the 
supply.

3. The mobility number is then computed (note simplification if n=0):

(9.4.5)

The water depth is denoted h.

4. The sediment concentration, c, is then given in weight-ppm:

(9.4.6)

5. The concentration is multiplied with the water discharge (in m3/s) and 
divided by 103 to get the sediment load in kg/s. 

Bed load formula

A formula for the total load in situations where there are dominantly bed 
load was given by Mayer-Peter and Müller (1948):

(9.4.7)

The hydraulic radius is denoted r.

These are some of the most well-known formulas, together with Ein-
stein’s formula and Tofaletti’s formula. The latter two are fairly involved, 
and are only used by some computer programs. There also exist a large 
number of other formulas giving more or less accurate answers.

The question remains on which formula to use. Three approaches exist: 

1. Some formulas work better in particular situations, for example steep 
rivers etc. The problem with this approach is the difficult and inaccurate 
classification of the formulas.
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Because of confusion on 
Imperial and metric units, 
and also because of mis-
printing, many textbooks do 
not give the correct sedi-
ment transport formulas

Four different bed forms:

The Norwegian words for 
ripples are “riller”. Dunes are 
called “dyner” or “sand-
banker”. Bars are called 
“sandbanker” or “grusører”. 
Antidunes are called “mot-
banker” or “motdyner”.
2. Do a measurement in the river, and use the formula that best fits the 
result (Julien, 1989). The problem is the difficulty of obtaining a good 
measurement.

3. Use several formulas, and choose an estimate close to the average 
value. 

The final approach depend on the information available and the experi-
ence and knowledge of the engineer.

9.5 Bed forms

Sediment particles moving on an initially flat bed may generate bed 
forms. Sediments forms small bumps on the bed with regular shape and 
interval. The following classification system is used for different types of 
bed forms:

1. Ripples
2. Dunes
3. Bars
4. Antidunes

The first three types of bed forms occur in subcritical flow. Sediments 
deposit on the down side of the bed form and erode from the upstream 
side. The ripples are fairly small, with a height under 3 cm, and occur 
only on sediment finer than 0.6 mm. The bars are much larger, with 
heights similar to the water flow depth. The dunes have a size between 
the bars and the ripples.

The antidunes are different in that they occur only in supercritical flow. A 
hydraulic jump is formed between the bedforms. Deposition takes place 
at the front of the dune, and the downstream side erodes. The bedform 
itself therefore may move upstream, even though the individual grain 
sizes move downstream. Antidunes may also move downstream or be 
stationary.

There exist a large number of methods for prediction of bed forms, pre-
dicting both the type and size. Unfortunately, as for the sediment trans-
port formulas, the various methods give highly different answers. An 
example of a bed form predictor is given by van Rijn (1984), estimating 
the bed form height, Δ of dunes:

Figure 9.5.1 Anti-
dunes at the Bodene-
orf reservoir in Austria 
during flushing, 2006. 
Photo: N. Olsen.
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(9.5.1)

where h is the water depth. This formula was developed based on curve-
fitting with data from 88 laboratory experiments and 22 field observa-
tions. The particle sizes were between 0.19 and 2.3 mm for the lab 
experiments and 0.49-3.6 mm for the field observations. Van Rijn (1984) 
noted that the formula should only be applied to flows with relatively low 
Froude numbers. According to his observations, the dunes would vanish 
for Froude numbers above 0.6 in the laboratory and above 0.2-0.3 in 
natural rivers. They would also disappear if conditions were so that his 
formula would give negative dune heights. The formula only applies for 
normal dunes, not ripples or antidunes.

Karim (1999) developed a formua for the height of antidunes: 

(9.5.2)

L is the length of the antidune and Fr is the Froude number. Kennedy 
(1963) proposed the following formula for L: 

(9.5.3)

The formula 9.5.2 gave very good results compared with both laboratory 
experiments and numerical modelling of antidunes (Olsen, 2016). 

The bed form height can be used together with the bed sediment grain 
size distribution to compute an effective hydraulic roughness (van Rijn, 
1987):

(9.5.4)

where λ is the bedform length, calculated as 7.3 times the water depth. 
The formula can be used to compute the velocities and the water surface 
elevation. 

The resulting shear stress from the friction of the dunes is only partially 
used to move sediments. When computing the effective shear stress for 
the sediment transport, the shear due to the grain roughness only should 
be used. This can be computed by using partition coefficients. The parti-
tion of shear stress used to move the particles divided by the total shear 
stress is denoted: 

(9.5.5)

An alternative partitioning formula is
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Many sediment discharge 
formulas are derived from 
laboratory experiments. It is 
very difficult, almost impos-
sible, to scale the size of the 
bed forms in the laboratory 
to prototype conditions. This 
may be one of the reasons 
why the many sediment dis-
charge formulas give differ-
ent results.
(9.5.6)

Here, τs denotes the shear stress due to the roughness of the sediment 
particles, and τd denotes the shear stress due to the roughness of the 
dunes. 

Using several empirical formulas, the following equation can be derived 
to compute pτ:

(9.5.7)

where pr is the partition of the roughness, given as:

(9.5.8)

In a laboratory experiment with movable sediments, the bed is often flat-
tened before the experiment starts. The bedforms will grow over time, 
until they get the equilibrium size. The roughness will therefore also vary 
over time in this period. 

9.6 CFD modelling of sediment transport

CFD modelling of sediment transport has currently been done by a 
number of researchers on many different cases: sand traps, reservoirs, 
local scour, intakes, bends, meandering channels etc. 

The bed load can be computed with specific bed load formulas, for 
example (van Rijn, 1987): 

(9.6.1)

The sediment particle diameter is denoted D50, τ is the bed shear stress, 
τc is the critical bed shear stress for movement of sediment particles, ρw 
and ρs are the density of water and sediments, ν is the viscosity of the 
water and g is the acceleration of gravity. 

Suspended load is computed using the algorithms given in Chapter 5. 
The convection-diffusion equation for suspended load is solved: 

(9.6.2)
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The fall velocity for the particles is denoted w. This is a negative number 
if the z direction is positive upwards. S is a source term which can be 
used to prescribe a pick-up flux from the bed. An alternative method to 
model resuspension of sediments, is to give a a boundary condition near 
the bed. The most commonly used method is to use van Rijn’s (1987) 
formula: 

(9.6.3)

The sediment particle diameter is denoted d, and a is a reference level 
set equal to the roughness height

It is also possible to adjust the roughness in the computation of the water 
velocities according to the computed grain size distribution at the bed 
and the bed forms (Eq. 9.5.2) (Olsen, 2000).

When the sediments are prescribed in the bed cell according to Eq. 
9.6.3, sediment continuity is not satisfied for this cell. There may there-
fore be sediment deposition or erosion. The continuity defect can be 
used to change the bed. A time-dependent computation can compute 
how the geometry changes as a function of erosion and deposition of 
sediments. 

Formulas for the correction of the critical shear stress as a function of the 
bed slope can be used. Also, formulas for the shear stress partition can 
be included in the numerical model. The formulas given earlier in this 
chapter can be used.

Non-uniform sediments

Many of the sediment transport formulas are developed for a uniform 
sediment distribution. All the sediment particles are then of similar size. 
In a natural river, this is often not the case. A mixture of coarse and fine 
particles are often found. The grain size distribution on the bed may look 
like the figure below:
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A non-uniform sediment distribution is often modelled numerically by 
dividing the sediment into several sizes. Each size is then modelled with 
a separate sediment transport formula and convection-diffusion equa-
tion. There is some interaction at the bed that has to be taken into 
account. First, the sediment transport capacity is affected by the multiple 
sizes. This is usually taken into account by multiplying the transport 
capacity from the formula, qs0, with the fraction, f, of each size on the 
bed:

(9.6.4)

There is also another process that can be important. Small particles may 
hide between larger ones, giving them more protection against erosion. 
The effect can be taken into account with a so-called hiding/exposure 
formula. The Shields factor is then modified by multiplying it with a 
parameter, ξ. One formula for the parameter for size fraction i is: 

(9.6.5)

The average sediment size is denoted d50.

9.7 Reservoirs and sediments

A river entering a water reservoir will loose its capacity to transport sedi-
ments. The water velocity decreases, together with the shear stress on 
the bed. The sediments will therefore deposit in the reservoir and 
decrease its volume.  

In the design of a dam, it is important to assess the magnitude of sedi-
ment deposition in the reservoir. The problem can be divided in two 
parts: 

1. How much sediments enter the reservoir
2. What is the trap efficiency of the reservoir

In a detailed study, the sediment grain size distribution also have to be 
determined for question 1. Question 2 may also involve determining the 
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Figure 9.7.1  Longitudinal 
profile of a reservoir. HRW 
is the highest regulated 
water level. LRW is the low-
est regulated water level. 
The reservoir volume below 
LRW is called the dead stor-
age, as this can not be 
used. 
location of the deposits and the concentration and grain size distribution 
of the sediments entering the water intakes. 

In general, there are two approaches to the sedimentation problem:

1.  The reservoir is constructed so large that it will take a very long time 
to fill. The economical value of the project will thereby be main-
tained.

2.  The reservoir is designed relatively small and the dam gates are 
constructed relatively large, so that it is possible to remove the sed-
iments regularly by flushing. The gates are opened, lowering the 
water level in the reservoir, which increases the water velocity. The 
sediment transport capacity is increased, causing erosion of the 
deposits. 

A medium sized reservoir will be the least beneficial. Then it will take rel-
atively short time to fill the reservoir, and the size is so large that only a 
small part of the sediments are removed by flushing.

The flushing has to be done while the water discharge into the reservoir 
is relatively high. The water will erode the deposits to a cross-stream 
magnitude similar to the normal width of the river. A long and narrow res-
ervoir will therefore be more effectively flushed than a short and wide 
geometry. For the latter, the sediment deposits may remain on the sides. 

The flushing of a reservoir may be investigated by physical model stud-
ies.

Another question is the location of the sediment deposits. Fig. 9.7.1 
shows a longitudinal profile of a reservoir. There is a dead storage below 
the lowest level the water can be withdrawn. This storage may be filled 
with sediments without affecting the operation of the reservoir. 

Sediment load predicion

Rough estimates of sediment load may be taken from regional data. 
Often the sediment yield in the area is known from neighbouring catch-
ments. It is then possible to assess the seriousness of the erosion in the 
present catchment and estimate rough figures of sediment yield. The 
land use, slope and size of the catchment are important factors.

HRW

LRW

Dead storage

Inflow
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Fig. 9.7.2 Example of sedi-
ment rating curve. The 
sediment load is on the ver-
tical axis, and the water dis-
charge on the horizontal 
axis. The points are meas-
ured values, and the line is 
Eq. 9.7.1

Note: Often, most of the 
sediments are transported 
during the larger floods

Alluvial river
For a more detailed assess-
ment, measurements of the 
sediment concentration in the 
river have to be used. Sedi-
ment concentrations are 
measured using standard 
sampling techniques, and 
water discharges are 
recorded simultaneously. The 
measurements are taken at 
varying water discharges. The 
values of water discharge and 
sediment consternations are 
plotted on a graph, and a rat-
ing curve is made. This is 
often on the form:

(9.7.1)

Qs is the sediment load, Qw is 
the water discharge and a and 
b are constants, obtained by 
curve-fitting.

The annual average sediment transport is obtained by using a time-
series of the water discharge over the year together with Eq. 9.7.1. 

9.8 Fluvial geomorphology

The river plays an essential role in shaping the landscape, in the process 
of transporting eroded sediments to the sea. The transport mechanisms 
are described differently depending on the river characteristics. In the 
upper part of the catchment, the creeks will have relatively large slopes. 
The transport capacity will often exceed the amount of available mate-
rial, leaving bedrock or larger stones on the river bed. Closer to the sea, 
the river gradient will be lower, and the river will not be able to transport 
large-sized material. 

An alluvial river is formed where the bed material have sufficient magni-
tude to enable free vertical bed fluctuations. Also, the bed material has a 
lower size than what is given by Shields curve, so there is continuous 

Sediment sampler

Qs aQw
b

=
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The regime theory was
developed by British water 
engineers in India at the end 
of the 19th century.

Paving is called “dekklag” 
in Norwegian. Meander is 
called “elveslyng”.

Figure 9.8.1 Cross-sec-
tional view of a river bend, 
where the arrows indicate the
secondary current
sediment transport. The bed fluctuates depending on the sediment con-
centraion. If the supply of sediment is larger than the capacity, the bed 
rises. If the supply is lower then the capacity, the bed is lowered. If the 
bed is in equilibrium, the river is said to be in regime. There exist theory 
for the relationship should be between different parameters for the chan-
nel. This is called regime theory (Blench, 1970). An example is a rela-
tionship between the water velocity, U, and the water depth, d: 

(9.8.1)

The formula is given in British Imperial units, where the velocity is in feet 
pr. seconds and the water depth is in feet. Also formulas exist where the 
river width and slope can be computed. 

Many steeper rivers are not in regime. Very little sediments may be 
transported during normal and low flow. Only during large floods, the bed 
material moves. These rivers often have large stones at the bed. They 
are said to be paved. The paving protects the underlaying sediments. 
Only during very large floods the paving will be removed, and then large 
changes in the bed geometry may occur. In general, the bed changes 
and shape of a river usually change mostly during large floods.

Meandering rivers

The river may also move sideways (laterally), as the classical meander-
ing pattern evolves. As the water velocity is higher closer to the water 
surface, than at the bed, a vertical pressure gradient will be formed when 
the water meets an obstacle or a river bank in a bend. The result is a 
downwards velocity component, causing a secondary current. (Fig. 
9.8.1)
 

The flow pattern causes the sediment transported on the bed to move to 
the inside of the curve. The shape of the resulting cross-section is given 
in Fig. 9.8.1, with the deeper part on the outside of the curve. Over time, 
sediments deposit on the inside of the curve and erosion will take place 
on the outside. Looking at a plan of the river, the meanders will move 
outwards and downstream. There exist different classification systems 
for the plan form (Schumm et. al., 1987). 

U 0.84d
0.64

=

Inner bank
Deposition

Outer bank
Erosion
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Figure 9.8.1. Definition of 
sinuosity of a river. The 
figure shows a plan view of 
the river. The length of the 
centerline is denoted C, and 
the length along the valley is 
denoted L. The sinuosity is 
then the ratio between these 
numbers: C/L.

Figure 9.8.3. Plan view of a 
meandering river. The 
location of the apex and 
cross-over is shown. The 
maximum depth is at the 
outer side of the bend at the 
apex.

Cross-over is called “brekk” 
in Norwegian. The area at 
the apex with the scour is 
called “kulp”. 

Figure 9.8.4. 

The upper figure shows a 
plan view of the meandering 
river. The broken line shows 
the location of the maximum 
depth of the river. This is 
also called the thalweg. 

The lower figure shows a 
longitudinal profile of the 
river, with the water surface 
and the bed level at the thal-
weg. The thalweg level 
shows a pattern with highest 
value at the cross-over and 
lowest level at the apex. 
A river can be classified according to its sinuosity (Fig. 9.8.2). If the sinu-
osity is below 1.05, the river is straight. Some researchers classify a 
meandering river by a sinuosity above 1.25. 

Useful terminology on meandering rivers is given in Fig. 9.8.3, giving the 
location of the apex and the cross-over. The secondary currents will 
have maximum strength at the apex, giving the largest scouring and 
maximum depth at this location, on the outside of the bend. This is also 
shown in Fig. 9.8.4, giving a longitudinal profile of a meandering river 
and explaining the word thalweg.

L

Centerline

Apex

Cross-over

Maximum depth

Apex  Cross-over

Bed
level

Water 
surface

Thalweg
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Figure 9.8.5 Plan view of 
velocity vectors in a 
meandering river, mod-
elled with CFD. The black 
arrows shows the vectors 
at the water surface, and 
grey arrows close to the 
bed. 

Figure 9.8.6 Plan view of 
water depths in a mean-
dering river, modelled 
with CFD. The values are 
given in cm.
There are many factors affecting the meander formation, magnitude of 
the sinuosity etc. for a river: Valley slope, size of sediments, sediment 
discharge and water discharge. Cohesion of the bank material also 
seems to be important, as it affects the bank stability. Vegetation along 
the river is then also important. 

Experiments on meandering channels

A natural meandering channel often do not show regular patterns. This is 
due to inhomogenities in bed material, local geology, vegetation, man-
made scour protection etc. To study the meander formation, flume stud-
ies in the laboratory have been carried out. An example is large flume 
studies at Colorado State University in the 1970’s. (Schumm et. al., 
1987). The flume was 28 meters long, and was initially filled with sand. A 
straight channel was moulded in the sand, and a water was then run 
through it. After some time, a meandering pattern emerged. This case 
was later computed using a CFD model (Olsen, 2003). The results are 
shown in Fig. 9.8.5, 9.8.6 and 9.8.7.

Note the velocity vectors close to the bed points more towards the inside 
of the curve than the vectors at the surface. This corresponds with Fig. 
9.8.1.
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Figure 9.8.7 Plan view of the
lication of a physical model s

Figure 9.8.8. Plan view of 
the meandering river, 
where a chute has formed.

Figure 9.8.9 Plan view of the
braided plan form.
If a meander short-cuts like shown in Fig. 9.8.8, this is often called a 
chute. Chutes can also be seen in Fig. 9.8.5 and Fig. 9.8.6 by close 
examination.

Braided rivers

Beside being straight or meandering, the river may have a third plan 
form: braided. This usually takes place at a steeper valley slope than the 
meandering plan form. Also, braided river systems often occur in 
reaches where the sediment transport capacity is lower than the sedi-
ment inflow, so that a net deposition occurs. 

A river can evolve from a meandering planform to braided. Then chutes  
form first and grow larger. The braided river does not follow a regular 
pattern, but consists of several parallel channels, separating and joining 
each other.

The flume study described in the figures above also evolved into a braid-
ing pattern. After the meandering channel had evolved, the meander 
bends became very large and channel cutoffs emerged. When several 
cutoffs had formed, the resulting plan form was braided (Zimpfer, 1975). 
CFD modelling of a braided system is shown in Fig. 9.8.9. 
 

 meandering pattern in a channel computed with a CFD model. The case is a rep-
tudy by Zimpfer (1975).

chute

 water depths in a meandering river, where cutoffs have started to make a 
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Scaling the water dis-
charge in the physical 
model
Smaller islands in the river are often called bars. 

A parameter describing the intensity of the braiding is the Braiding Index 
(BI). This index tells how many channels there is in a river on average. 
With no braiding and a single channel, the BI becomes 1. 

The method to compute the BI is to analyze photographs of the braided-
channel, where a number of cross-sections are made. For each cross-
secions, the number of channels are counted. The average number for 
all cross-sections becomes the BI. 

A question is then what is a channel? Looking at Fig. 9.8.9, some chan-
nels have dead ends and no water velocities. Should these channels be 
taken into account when computing the BI? Egozi and Ashmore (2009) 
worked on braiding studies using physical models. They defined two 
braiding indexes: One active BI, which only counted the channels where 
there were sediment transport. In these channels, the bed shear stress 
was larger than the critical shear stress for the particles. The other index 
was a total BI, which counted all channels, both active and inactive. 

9.9 Physical model studies

A physical model is an important tool to estimate effects of sediment 
transport for engineering purposes. There exist a large number of scal-
ing laws that has to be used according to the purpose of the study. A 
detailed description of the different methods are given by Kobus (1980).

Water flow

The water discharge in the physical model is usually determined by the  
the Froude law, based on the similarity between momentum and gravita-
tional forces. The Froude number should be the same in the model as in 
the river:

(9.9.1)

Given the geometrical scale,sg, the Froude number determines the 
water discharge in the model. The next problem is to determine the cor-
rect roughness in the physical model The roughness will affect the shear 
forces on the bed and thereby the energy slope in the model. The shear 
force is affected by viscosity and the Reynolds number. The Darcy-
Weissbach’s diagram for the friction coefficients can be used to compute 
the physical model friction factors. This friction factor should be the same 
in the physical model as in the prototype. Given the two Reynolds num-
bers in the physical model and the prototype, the diagram can be used to 
compute the relative roughness (ks/rh roughness to hydraulic radius) of 
the physical model, given the similar parameter for the prototype.

The scaling of the sediments is more difficult. 

Erosion

If the main topic of the investigation is the computation of maximum 
scour or erosion, Shield’s graph may be used. 

. (9.9.2)
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Scaling sediments for ero-
sion studies

Scaling sediments for 
suspended load
A simplified approach is to say that τ* should be the same in the proto-
type as in the physical model. Eq. 9.9.2 is then solved with respect to the 
particle diameter, giving the following equation:

(9.9.3)

The density of the sediments in the prototype is denoted ρs,p, and ρs,m is 
the density of the sediments in the model. The computation involves the 
shear stress and particle diameter in the prototype and in the model. 
Subscripts m and p are used for model and prototype, respectively. It is 
assumed that the particle Reynolds numbers are so large that the τ* 
value is the same in prototype and model. The equation is also only valid 
for particle sizes and bed shear stresses close to erosion. For finer parti-
cles, a more involved approach must be used.

Suspended sediments

If the main topic of the investigation is suspended sediments, the Hunter 
Rouse number, z, is usually used:

(9.9.4)

If the Hunter-Rouse number is the same in the prototype and the model, 
then this gives the fall velocity of the particles in the physical model. The 
sediment diameter and density then have to be chosen accordingly.

Scaling time 

To model the time for the movement of the sediments, the ratio of sedi-
ment transport to volume of sediments is used:

(9.9.5)

T is the time, Qs is the sediment load and V is the volume of the material 
being transported. The scaling factor for time, st, is given as 

 (9.9.6)

A sediment transport formula can then be used to give the sediment dis-
charge pr. unit width, qs. If s is the geometric scale (for example 1:20), 
then Eq. 9.9.5 and 9.9.6 can be combined to:

(9.9.7)

Example: Find the scaling time for a physical model with sediments of 
size 4 mm in the prototype and 2.5 mm in the physical model. The water 
velocity is 0.2 m/s in the model, and the water depth is 0.2 m. The proto-
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Fig. 9.9.1 Photo of the phy
made at SINTEF, Norway, 
Gandaki hydropower plant
model was used to investig
flushing from the hydropow
The dams are shown in the
corner. The water is fed into
the upper left part of the pi
model is approximately ten
from the dam to the end sh
right. The model was built 
according to the prototype b
with sand to the level of the
crest. The model was then 
with water, and then the flu
by opening the dam gates.
the-river reservoir is fairly n
of the sediments was remo
flushing 
type sediments have a density of 2.65 kg/dm3, and the model sediments 
have a density of 1.05 kg/dm3. Manning-Stricklers friction factor is 40, 
and the model scale is s=0.015 (1:66.67).

Solution: First, the sediment discharge is computed in both the prototype 
and the model, using Engelund-Hansens formula. This gives:

qs = 0.030 kg/s/m (model)
qs = 0.191 kg/s/m (prototype)

The time scale becomes: 

A simulation time of 1 hour in the lab will be similar to 697 hours in the 
prototype.

The accuracy of the scaling of the time will not be better than the accu-
racy of the sediment transport formula used.

Multiple sediment processes

If the topic of the investigation involves both suspended sediments, ero-
sion and sediment transport, then the different methods of scaling the 
sediments may give different model sediment characteristics. It may 
therefore not be possible to model all transport modes and processes. 
This has been one of the motivations for developing CFD models with 
sediment transport processes. 

Other problems

Scaling down finer sediments can result in particles with cohesive forces. 
This would be the case for particles under 0.1 mm. To avoid this, it is 
possible to use a distorted physical model. Then the vertical scale is 
larger than the horizontal scale. However, this will also distort all second-
ary currents, which will not be correctly modelled. 

Another problem is to scale bedforms. Dunes and ripples occur at differ-
ent hydraulic conditions, and it is almost impossible to get for example 
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Problem 2 is taken from 
the Iffezheim dam in the 
River Rhine in Ger-
many (Kuhl, 1992), 
where this solution was 
chosen.
the ratio bedform height to water depth to be the same in the physical 
model and the prototype. Also, bedforms may occur only in the physical 
model and not in the prototype. The bedforms will then cause different 
effects for energy loss and sediment transport capacity in the physical 
model and the prototype. 

9.10 Problems

Problem 1. Channel design

A discharge channel from a power station is 30 m wide and has a rectan-
gular cross-section. The bed slope is 1:200 and the maximum water dis-
charge from the power station is 100 m3/s. To prevent erosion of the 
channel, stones are used at the bed of the channel. How large must the 
stones be? Assume uniform grain size distribution for the stones.

Problem 2. Sediment transport

The construction of a dam in a river caused erosion downstream. What 
would be the reason? 

The river authorities solved the problem by adding gravel to the river, 
downstream of the dam. What would be the required amount of gravel, 
when the water discharge was assumed to be 1500 m3/s, the water 
depth 3.5 meters, the width 100 meters and the slope 1:1600 The gravel 
size was identical to the sediment size at the bed: a diameter of 20 mm. 

Can you think of an alternative solution to the problem?

Problem 3. Sediment load estimation

Estimate the annual sediment load in a river, given the flow duration 
curve below, and the rating curve in Fig. 9.7.1. How much of the sedi-
ments are transported by the highest floods, occurring under 5 % of the 
time?

Problem 4. Physical model study

A physical model study of a reservoir is conducted. The scale is 1:30. 
The water discharge in the prototype is 300 m3/s. What is the discharge 
in the model?

The average dimensions of the physical model is 10 m long, 5 m wide, 

3000
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     0

m3/s

    100 %                   50 %                     0 %  (of time)

Flow duration
curve
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and 10 cm deep. Suggest a sediment type and size for the physical 
model, when investigating sedimentation of prototype silt particles of 0.3 
mm.

Suggest a sediment type for modelling flushing of the same silt.

If a water discharge over time were to be modelled, including both sedi-
mentation and erosion, what kind of sediment should be chosen?

Problem 5. HEC-6

Compute the trap efficiency over time in a water reservoir built in a river 
with slope 1:200. The water discharge is 100 m3/s, the river width is 30 
meters, the dam height is 30 meters. Assume a constant reservoir width 
of 200 meters. The inflow sediment is silt with particle diameter 0.3 mm, 
and the concentration is 2000 ppm.

Problem 6. Sediment load formulas

Compute the sediment transport capacity pr. m. width in an alluvial chan-
nel, with the following data:

U=2.5 m/s
Depth, y = 1.5 m
Manning-Strickler coefficient: 50
Sediment size: 1 mm

Use both Engelund-Hansen’s and van Rijn’s formulas.
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Earlier methods of evaluat-
ing impacts of river regula-
tions on fish was dubbed 
BOGSAT: Bunch Of Guys 
Sitting Around a Table, dis-
cussing the effects of the 
regulation. The purpose of 
River Habitat Modelling is to 
improve the scientific back-
ground for the evaluation. 

The science has also lead to 
increased cooperation and 
understanding between biol-
ogists and engineers work-
ing in rivers.

Main factors affecting 
the fish: 

Instream Flow Incre-
mental Methodology 
(IFIM):
10. River habitat modelling

10.1 Introduction

The science of River Habitat Modelling has evolved over the last ten 
years. The main purpose is to assess the effect of habitat for fish, mostly 
salmon, in relation to river regulations. Hydropower production has often 
been the cause of changes in the water discharge. River Habitat Model-
ling aims to quantify the effects of changes in the river flow conditions 
and geometry, to assess the impact of regulations on the fish production. 
In Norway, this has been used to determine minimum flow regulations in 
rivers. Also, it is used for assessing environmental effects from hydrope-
aking. 

10.2 Fish habitat analysis

The basis of the currently used method is that fish will seek an optimum 
condition with respect to:

- Feeding
- Energy to stay in the river
- Spawning
- Protection from predation

The factors vary depending on the age of the fish. Often, the critical age 
for salmon will be the juvenile stage. The studies often look at the rearing 
and growing areas of the fish.

Looking at river regulations, the main changes in the river will be the 
physical habitat. The main factors often used are:

- Water depth
- Water velocity
- Substrate/cover

Substrate is usually determined by a characteristic size of the stones on 
the river bed. The stones provide cover/hiding places for the fish. How-
ever, plants with leaves extending out over the river will also provide 
cover.

The effect of feeding is neglected in simpler models. Then, it is assumed 
the fish prefers optimum values of the parameters given above. 

The currently most used methodology for fish habitat analysis is called 
the Instream Flow Incremental Methodology (IFIM). It can be divided in 
the following stages: 

1. Selection of representative reach of the river
2. Counting the fish at different locations, recording habitat parameters
3. Generating habitat preference functions 
4. Measuring habitat parameters at different discharges
5. Generating spatially distributed habitat as a function of discharge
6. Computing the habitat as a function of a time series of discharge

The selection of representative reach of the river has to be done with 
respect to typical values of depth, velocity and substrate. Often, fish biol-
ogists provide input for the selection. 
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Figure 10.2.1. Gener-
ation of HSI index 
for velocity. The 
number of fish in each 
velocity group is 
counted  (left figure), 
and scaled to max 
value of unity to 
become the HSI index 
(right)
The preferred method for counting the fish is by diving. The diver covers 
the whole area of the selected reach, and put a marker on the river bed 
for each fish observation. Afterwards, the depth, velocity and substrate is 
recorded for each marker. It is also possible to identify fish locations from 
the surface, but then it is often more difficult to spot the fish. Then the 
velocity, depth and substrate is divided into groups, and it is counted how 
many fish there is in each group. This is shown in Fig. 10.2.1:

The HSI index indicates the preferred velocity for the fish. Another ques-
tion is how much area of a preferred velocity there is in the river. This is 
called availability of velocity. The availability is computed the same way 
as the HSI index, but on the vertical axis is the area of a given velocity 
interval. This can also be scaled to unity as the maximum area. 

A preference index, D, is made from the HSI index and the availability 
function, by using the following formula:

(10.2.1)

where p is the available habitat of a defined velocity range, and r is the 
HSI index. Both p and r are scaled so their values range between zero 
and 1.

Three regions are made:

- Preferred habitat, where most of the fish observations are
- Avoided habitat, where there are no observations
- Indifferent, the region between 

Preferred habitat is if D is above 0.2. If D is below -0.2, this is avoided 
habitat. The area between -0.2 and 0.2 is indifferent. An example is 
given in Fig. 10.2.2.

It is also possible to make an index by combining the curves for velocity, 
depth and substrate. 

Given the indexing system, a map of preferred, indifferent and avoided 
habitat is made. This is called a habitat map, and an example is given in 
Fig. 10.2.3. The habitat will vary according to the water discharge. Sum-
ming up the preferred area in a time series of water discharge, a meas-
ure of fish habitat for a given river regulation is made. Effects of changes 
in the regulations can thereby be computed, but using different regulated 
discharges over the year.
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Figure 10.2.2 Generation of
as a function of velocity

The preference curve is a 
biological model for the 
fish habitat. There also exist 
other biological models, 
based on different 
approaches.

Figure 10.2.2 Velocity vect
in a fish farm tank, seen fro
outlet is in the center of the t
(Olsen and Alfredsen, 1994)
where the velocity is too high
The method will, however, only work if it is possible to estimate the 
velocity and depth as a function of the water discharge. This has to be 
made in preferably three dimensions, as the spatial variation of velocity 
near the bed is required. The fish is often found near the bed. The follow-
ing two chapters shows the two main methods:

- Measurements and zero/one-dimensional models
- Multidimensional numerical models

This is described in the following chapters.

10.3 Zero and one-dimensional hydraulic models

Initial work on habitat hydraulics started with measuring the water veloci-
ties in the characteristic reach of the river. Measurements were made in 
multiple cross-sections, or transects. A two-dimensional map of the 
velocities and depths were then obtained for a given discharge. This was 
repeated for several water discharges. An interpolation function was 
used for discharges between the measured ones. 

Preference function

Velocity

1

-1
   Preferred          Avoided

 preference curve 

                  Indifferent

or map (right) and computed habitat (left) near the bed for juvenile salmon 
m above. The water is entering on the left side, creating the current shown. The 
ank, at the bottom. The fish farm tank is 1.5 meters deep and 2.7 meters wide 
. Most of the area has preferred velocity, except for the entrance and exit region 
, and the corners where the velocity is lower than preferred.
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At the time this book was 
made, the bioenergetic 
models were still on the 
research stage.
The interpolation function could be fairly involved, and often a one-
dimensional backwater program was used. Various weighing functions 
were calibrated for the velocity distribution in the lateral direction. Exam-
ples of computer programs using this procedure is RIMOS and PHAB-
SIM.

There were two problems with this procedure:

1.   A large number of field measurements had to be carried out
2.   The calibration of the interpolation functions were only valid for the 

geometry where the measurements were taken. In other words, it 
was not possible to estimate the effects of changes in the geometry.

To solve this problem, multi-dimensional models have to be used.

10.4 Multidimensional hydraulic models

The multidimensional numerical models are two-dimensional depth-
averaged or three dimensional. The models solve the Navier-Stokes 
equations using for example the methods given in Chapter 6. The mod-
els can compute the effect of changes in the bed geometry, as the geom-
etry is given as input for the grid. This is very useful for assessment of 
fish habitat studies for river regulations, as a mean of improving the hab-
itat is often to create small dams or obstacles in the flow. The water 
depth is thereby increased, and also the variation in water velocity. 

10.5 Bioenergetic models

Bioenergetic models are the latest in a succession of habitat assessment 
methodologies. The theory is to compute how much energy the fish uses 
in different locations of the flow, as a function of water velocity and possi-
bly turbulence. As opposed to earlier studies, the food intake is also 
taken into account. The fish feed on small organisms, which have differ-
ent concentrations in various locations of the river. This means the fish 
will receive more food/energy in some locations than in others. The mod-
els also assess how much energy is consumed by the fish. This is a 
function of the velocity in the river. Using three-dimensional numerical 
models, it is possible to compute the food concentration, water velocity 
and turbulence over the whole three-dimensional river body. The opti-
mum location for the fish can then be estimated, with the assumption 
that the fish will seek a maximum possible difference between the 
energy intake and consumption. 

10.6 Problems

Problem 1. Preference curves

The figures below give depth and velocity in a representative reach of 
Sokna River in Norway, at a discharge of 10 m3/s. The figure with the 
dots provide locations of fish observations. Make preference curves for 
the fish, for both depth and velocity.
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Problem 2. Habitat map

Make habitat maps for Sokna River, for 10 m3/s, for both water depth 
and velocity. 
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Problem 3. Habitat map for changed velocity

Compute the habitat maps when the discharge is lowered to 3 m3/s. The 
velocity and depth is given below. Is the habitat improved or has it deteri-
orated?

Problem 4. Habitat improvement

Suggest measures to improve the habitat in the river, and methods to 
document the improvements before they are carried out.
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Appendix I. Source code for explicit solution 
of Saint-Venant equations

#include "stdio.h"
#include "math.h"

main()
{

FILE *in;
FILE *out;

int i,j,k,n;
double timein[100];
double qinn[100];
double depth[200][2];
double velocity[200][2];
double time, y, u, alpha, beta, q, dummy;
double timestep = 3.0;
double deltax = 50.0;
double slope = 0.005;
double manning = 30.0;
int sections = 99;

in = fopen("inflow","r");
out = fopen("outflow","w");
fclose(out);

/* reading time series */

n=0;
for(j=0;j<100;j++) {
   if(fscanf(in,"%lf %lf",&timein[j], &qinn[j]) != 2) break;
   n++;
   }

fclose(in);

/* initialization */

y = pow (qinn[0]/(manning*sqrt(slope)),0.6);
u = qinn[0] / y;
for(i=0;i<sections+1;i++) {

depth[i][0] = y;
depth[i][1] = y;
velocity[i][0] = u;
velocity[i][1] = u;
}

/* main loop */

time = timein[0];
for(j=0;j<=1000;j++) {
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/* boundary conditions */

for(k=0;k<n;k++) if(timein[k]>time) break;
beta = (timein[k] - time) / (timein[k] - timein[k-1]);

q = qinn[k-1] * beta + qinn[k] * (1.0-beta);
y = pow (q/(manning*sqrt(slope)),0.6);
u = q / y;

velocity[0][0] = u;
velocity[0][1] = u;
depth[0][0] = y;
depth[0][1] = y;

velocity[sections][0] = velocity[sections-1][1];
depth[sections][0] = depth[sections-1][1];

/* first computation of the water depth, according to Eq. 3.4.5 */

for(i=1;i<sections;i++) {
depth[i][1] = depth[i][0] - timestep / (2.0 * deltax) * (velocity[i][0] *

(depth[i+1][0] - depth[i-1][0]) + depth[i][0] *
(velocity[i+1][0] - velocity[i-1][0]));

}

/* compute the water velocity */

for(i=1;i<sections;i++) {
dummy = - velocity[i][0] * timestep * 0.5 / deltax

* (velocity[i+1][0] - velocity[i-1][0]);
dummy += - 9.81 * (timestep * 0.5 / deltax) * (depth[i+1][0] - 

depth[i-1][0]); 
dummy += 9.81 * slope * timestep;
dummy += - velocity[i][0] * velocity[i][0] * timestep * 9.81

/ (pow(depth[i][0],1.3333) * manning * manning);
velocity[i][1] = velocity[i][0] + dummy;
}

/* depth according to continuity - control volume approach*/

for(i=1;i<sections;i++) {
u = 0.5 * (velocity[i][0] + velocity[i][1]);
depth[i][1] = 

(0.25 * (velocity[i-1][1] + velocity[i-1][0]) * 
(depth[i-1][1]+depth[i-1][0])
+ depth[i][0] * (deltax / timestep - 0.5 * u ))
/ (deltax / timestep + 0.5 * u );

}

/* updating variables */

for(i=1;i<sections;i++) {
velocity[i][0] = velocity[i][1];
depth[i][0] = depth[i][1];
}
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/* printing */

time = time+timestep;
out = fopen("outflow","a");
fprintf(out,"%lf ", time);
fprintf(out,"%lf ",velocity[0][1]*depth[0][1]);
fprintf(out,"%lf ",velocity[1][1]*depth[1][1]);
fprintf(out,"%lf ",velocity[sections/4][1]*depth[sections/4][1]);
fprintf(out,"%lf ",velocity[sections/2][1]*depth[sections/2][1]);
fprintf(out,"%lf ",velocity[sections-1][1]*depth[sections-1][1]);
fprintf(out,"\n");
fclose(out);

}

}

INFLOW FILE:

0.0 10.0
100.0 15.0
200.0 20.0
300.0 15.0
400.0 10.0
10000.0 10.0
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Appendix II  List of symbols and units

The units are in brackets []

Latin

A area [m2]
B width of a river/channel [m]
c,C constants in k-ε turbulence model [dimensionless]
c concentration [ppm, kg/m3, dimensionless]
d sediment particle diameter [m]
D habitat preference index
E specific energy height [m]
F flux [kg/s]
g acceleration of gravity [m/s2]
h water depth [m]
I slope [dimensionless]
Ib,I0 bed slope [dimensionless]
If, Ie, friction or energy slope [dimensionless]
I heat flux
k friction loss coefficient [dimensionless]
k turbulent kinetic energy [m2/s2]
k coefficient for biological reactions [1/day]
K coefficient in hydrologic routing method [s]
M Manning-Stricklers friction coefficient [m1/3/s]
n Mannings friction coefficient [s/m1/3]
N Brunt-Väisälä frequency [1/s]
p habitat availability index
P pressure [N/m2]
P wetted perimeter [m]
q water discharge/width [m2/s]
qs sediment discharge/width [kg/s/m]

Q water discharge [m3/s]
r hydraulic radius [m]
r distance from centerline of plume [m]
r HSI index (habitat hydraulics)
t time [sec.,days]
T temperature [0C, 0K]
U average velocity [m/s]
u fluctuating velocity [m/s]
u* shear velocity [m/s]
V average velocity in direction 2 [m/s]
V volume [m3]
v fluctuating velocity [m/s]
W average velocity in vertical direction [m/s]
w fluctuating velocity in vertical direction [m/s]
x spatial variable [m]
X coefficient in hydrologic routing method [dimensionless]
y spatial variable [m]
y water depth [m]
z spatial variable - vertical distance [m]

Greek

ε dissipation of turbulent kinetic energy [m2/s2]
γ specific density for water [N/m3] 
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κ constant in velocity wall law (0.4) [dimensionless]
μ dynamic viscosity of water [Ns/m2] (1.3x10-3 at 20 0C)
ν kinematic viscosity of water [m2/s] (1.3x10-6 at 20 0C)
νT turbulent eddy-viscosity [m2/s] 

ρ density of water [kg/m3]
ρw density of water [kg/m3]

ρs density of sediments [kg/m3] (often set to 2.65 kg/dm3)

τ shear stress [N/m2]
τ∗ dimensionless shear stress [dimensionless]
ξ coordinate system direction 1 [dimensionless]
ψ coordinate system direction 2 [dimensionless]
ζ coordinate system direction 3 [dimensionless]
Γ diffusion coefficient [m2/s]
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Appendix III Solutions to selected problems

Chapter 2, Problem 2

First, compute the cross-sectional area:

    A = 8x2+10x+15x2 = 96 m2

The wetted perimeter is:

    P = 2+15+3+10+3+8+2 = 43 m

The hydraulic radius is:

Mannings formula gives the water velocity:

 m/s

The water discharge is:

    Q = UA = 4.5x96 = 440 m3/s

When the Manning-Strickler friction coefficient varies, the same proce-
dure and formulas have to be used for each part of the cross-section. 
The following table gives the results:

The total discharge is the sum of the discharges in the three parts.

Q = 78+286+39=403 m3/s.

Section A Section B Section C

Area 30 50 16

Wetter perimeter 17 16 10

Hydraulic radius 1.76 3.12 1.6

Velocity 2.6 5.73 2.44

Discharge 78 286 39

r
A
P
--- 96

43
------ 2.23m= = =

U MI

1
2
---

r

2
3
---

60 1
500
---------2.23

2
3
---

4.5= = =
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Chapter 2, Problem 3

First, find the water level at B, from the equation for the hydraulic jump:

The velocity at C:

 m/s

The Froude number at C is:

The depth is then given by: 

and

The main method to compute the distance from A to B is to start at A and 
compute the water surface profile. When it reaches 0.667m, this will be 
the location of the jump. 

The following formula is used: 

It is converted to:

This has to be solved in a table, where If and Fr are computed. If is com-
puted by Manning’s formula:

hB

hC
------ 1

2
--- 1 8FrC

2
+ 1–( )=

UC
Q
yC
----- 6

3
--- 2= = =

FrC
2 UC

2

gyC
--------- 2

2

9.81x3
---------------- 0.136= = =

hB

hC
------ 1

2
--- 1 8FrC

2
+ 1–( ) 1

2
--- 1 8x0.136

2
+ 1–( ) 0.222= = =

hB 0.222hC 0.222x3 0.667m= = =

dy
dx
------

If I0–

1 Fr
2

–
-----------------=

xΔ Δy
1 Fr

2
–( )
If

----------------------=

If
U

2

M
2
y

4
3
---

-------------=
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The distance from A to B is 53 meters.

Chapter 2, problem 5

The integral of the concentration over time becomes:

The discharge is:

Chapter 4, Problem 1

The continuity equation gives the water velocity as:

The shear stress is:

The shear velocity is:

Computing the diffusion coefficient. Using Fischer et al. (1979): (Eq. 
4.3.3) 

Table 1: 

Δy y U If Fr2 Δx x

- 0.4 - - - - 0

0.05 0.425 14.11 0.25 47.8 9.4 9.4

0.05 0.475 12.63 0.172 34.24 9.7 19.1

0.05 0.525 11.43 0.123 25.36 9.9 29.0

0.05 0.575 10.43 0.0910 19.28 10.0 39.0

0.037 0.6185 9.70 0.0714 15.51 7.5 46.5

0.03 0.652 9.2 0.0599 13.24 6.13 52.6

I c td cΔt 500x1ppmminutes= = =

Q
m

c td
---------- m

I
---- 2kg

500min

10
6

-------------------
------------------- 4000

kg
min
--------- 4

m
3

min
--------- 0.067

m
3

s
------ 67

l
s
--= = = = = = =

U
Q
By
------ 20

2x30
------------ 0.33

m
s
----= = =

τ ρgyI 1000x9.81x2x
1
63
------ 313Pa= = =

u*
τ
ρ
--- 313

1000
------------ 0.56

m
s
----= = =
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The initial concentration is equal to the mass divided by the volume of 
water in the river in the time period:

These numbers we use in the general equation for the concentration 
downstream of a spill: (Eq. 4.3.4)

This equation is plotted below:

Chapter 4, Problem 2

The densimetric Froude number is:

The velocity is computed from:

Γ 0.011
UB( )2

Hu*
--------------- 0.011

0.33x30( )2

2x0.56
--------------------------- 0.96= = =

c0
m

ρQt
---------- 2000

1000x 20x10x60( )
--------------------------------------------- 0.000167 167ppm= = = =

c t( )
c0L

2 πΓt
----------------e

x Ut–( )2

4Γt
----------------------– 167x200

2 0.96πt
-----------------------e

10000 0.33t–( )2

3.84t
----------------------------------------–

= =

Fr′
u0

ρres ρ0–

ρres
--------------------- 
  gd0

----------------------------------------

50
3.14x1.5x1.5( )

-------------------------------------

1023 1000–
1023

------------------------------ 
  9.81x3

--------------------------------------------------------- 8.7= = =
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The velocity is 0.56 * 7 m/s = 3.8 m/s. 

Chapter 7, Problem 1

The shear stress on the lake is computed from Eq. 7.2.1 as 

The slope of the water surface is given by Eq. 7.2.3: 

The density at 15 oC is approximately 999.12 kg/m3 according to the 
table in Chapter 7.4, and the density for 5 oC is 999.99 kg/m3. 

The slope of the thermocline is given by Eq. 7.4.10:

The thermocline will tilt around an axis in the middle of the lake. The dis-
tance from the middle of the lake to the far ends is half the length of the 

u
u0
----- 4.3 8.7( )

2
3
---– 20

3
------ 
 

1
3
---–

e
96

02

202
--------–

0.56= =

Chapter 5, Problem 5

τ c10ρaUa
2

1.1x10
3–
x1.2x15

2
0.3Pa= = =

I
τ

ρgh
---------- 0.3

1000x9.81x100
-------------------------------------- 3x10

7–
= = =

I′ I–
ρ1

ρ′
----- 3x10

7–
x

1000
999.99 999.12–
---------------------------------------– 3.5x10

4–
= = =
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lake. The rise/fall in the thermocline at these locations will be:

Chapter 7, Problem 2

We start by computing the density gradient from the temperature gradi-
ent. The temperature gradient at 10 meter is 0.5 degrees/meter. There 
will therefore be 4 meters between 10 and 12 degrees. The table in 
Chapter 7.3 gives the densities at these temperatures as 999.73 and 
999.52. The density gradient becomes:

 

The Brunt-Väisälä frequency is given as:

(7.8.2)

This is inserted into the formula for the thickness of the abstraction layer:

(7.8.4)

The thickness of the abstraction layer is both above and below the 
intake. Therefore, it will only reach half the thickness above the intake, or 
7.5 m. This is below 9 meters, which means the intake will not take water 
from the upper 1 meter layer.

Chapter 8, Problem 1

A stable condition means that the loss is equal to the inflow: 2000 kg/
day. The loss rate is 0.1, meaning 2000 kg/day is 10 % of the total. The 
total phosphorous is therefore 2000/0.1 = 20 000 kg. The concentration 
is:

The steady state concentration for an inflow of 300 kg/day is similarly 3 
ppm. The reduction will therefore be 17 ppm. 20 % of the original value 
is 4 ppm. After time t, there will be 4-3=1 ppm left of the reduction. The 
time is described by the following equation: 

Δh
L
2
---I'

5000
2

------------x3.5x10
4–

0.87m= = =

dρ
dz
------

999.52
kg

m
3

------ 999.73
kg

m
3

------–

4m
----------------------------------------------------- 0.05– 25

kg

m
3

------= =

N
2 g

ρ
---–

dρ
dz
------ 9.81

1000
------------ 0.0525–( )– 0.000515Hz= = =

d k3
Q

2

B
2
hN

2
----------------
 
 
 

1
3
---

1.2
2

m
3

s
------ 

 
2

2m( )2
x1m 0.000515Hz( )

-------------------------------------------------------------

 
 
 
 
 

1
3
---

15m= = =

c
20000kg

10
6
x10

3
kg

-------------------------- 2x10
5–

20ppm= = =

c c0e
kt–

= 1 17e
0.1t–

= t 10
17
1
------ 
 ln 28days= =
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Chapter 9, problem 1

Assume uniform flow and that the bed shear stress is equal to the critical 
shear stress given by Shields graph. Also, assume the channel is wide, 
so that the hydraulic radius is equal to the water depth. This gives six 
unknown and six equations. The unknown are: 

- water depth h
- water velocity U
- particle diameter d
- bed roughness ks
- Manning-Stricklers friction factor M 
- bed shear stress τ

The six equations are:

- Water continuity: Q=BhU

(2.1.1)
(2.1.4)

(2.2.4)

 (2.2.5)

 From Shields graph

The equations are best solved in the following manner: 

1. Guess a Manning’s coefficient, M.
2. Computer the water velocity using Eq. 2.2.4
3. Compute the water depth using the continuity equation
4. Compute the shear stress using Eq. 2.2.1.
5. Compute R* in Shields diagram
6. Find τ∗ from Shields diagram
7. Compute d from the equation in Shields graph
8. Compute ks using 2.1.4
9. Compute Mannings M value from Eq. 2.2.5.
10 Check if M is equal to what was assumed in point 1. If it is very differ-

ent, do another iteration starting from point 1, with the M value from 
point 9.

Using this method we get: 

1. M=30 (guess)
2. U=2.6 m/s
3. y = 1.3 m
4. τ = 60 N/m2
5. R* = 18 000
6. τ∗ = 0.06 
7. d = 0.06 m
8. ks = 0.18 m
9. M = 34 
10. Iteration with M=34 gives d=0.06 m.

τ ρghI=
ks 3d90=

U M rh

2
3
---

I

1
2
---

=

M
26

ks

1
6
---

------=

τ*=
τc

g ρs ρw–( )d
-----------------------------
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Chapter 9, problem 6

First, the particle fall velocity is obtained from Fig. 9.3.1 to be 0.15 m/s. 
Then some basic parameters are computed:

Friction slope:

 

Bed shear: 

 = 21.42745673 N/m2 

Shear velocity: 

 = 0.146381203 m/s

Particle Reynolds number:

Shields curve gives the Shields parameter: C = 0.05

Critical shear stress: 

= 0.809 N/m2

The suspension parameter: 

Engelund-Hansens formula: 

 

    = 9.9 kg/m/s

If
U

2

M
2
y

4
3
---

------------- 2.5
2

50
2
x1.5

4
3
---

---------------------- 0.001456= = =

τ ρgyIf 1000x9.81x1.5x0.001456= =

u*
τ
ρ
--- 21.42

1000
-------------= =

R*

u*d

ν
-------- 0.14638x0.001

10
6

------------------------------------ 146= = =

τc Cg ρs ρw–( )d 0.05x9.81x 2650 1000–( )x0.001= =

Z
w

κu*
--------- 0.15

0.4x0.1464
--------------------------- 2.5618= = =

qs 0.05ρsU
2 d50

g
ρs

ρw
------ 1– 
 

------------------------
τ

g ρs ρw–( )d50
----------------------------------

3
2
---

=

qs 0.05x2650x2.5
2 0.001

9.81
2650
1000
------------ 1– 
 

-------------------------------------
21.43

9.81 2650 1000–( )0.001
-----------------------------------------------------------

3
2
---

=
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qb

cbed 0.015
D5

a
-----=
Then we use van Rijn’s formula for bed material load:

        qb = 0.002295 m2/s

Van Rjin gives qb in m2/s. This is transformed to kg/s by multiplying it 

with the sediment density: 2650 kg/m3, giving: 

    qb = 6.082 kg/s/m

Then we use Van Rijn’s formula for suspended load. We assume the ref-
erence level at the bed is equal to 5 % of the water depth, or 1.5x0.05 = 
0.075 m. The reference concentration is:

 
 
 
 
 cbed = 0.009756758    (volume fraction)

The sediment transport caused by this reference concentration only 
takes place above the reference level. To compute the suspended sedi-
ment transport, we can divide the water column in layers. For conven-
ience, let us assume the first layer is twice as high as the reference level. 
This is then 10 % of the water depth, or 0.15 m. And that there are three 
more layers of equal size: 

(1.5 - 0.15)/10 = 0.45 m

We then use the Hunter Rouse formula to compute the concentration in 
the center of each cell, and the logarithmic velocity profile to compute 
the velocities. This can then be multiplied with the height of each cell to 
give an estimate of the suspended load.

qb

D50
1.5 ρs ρw–( )g

ρw
--------------------------

----------------------------------------- 0.053

τ τc–

τc
-------------

2.1

D50
0.3 ρs ρw–( )g

ρwν2
--------------------------
 
 
  0.1

-----------------------------------------------------=

0.053

21.43 0.809–
0.809

---------------------------------
2.1

0.001
0.3 2650 1000–( )9.81

1000x 10
6–( )

2
---------------------------------------------

0.1
----------------------------------------------------------------------------- 0.001

1.5 2650 1000–( )9.81
1000

--------------------------------------------- 
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 
 
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 
 

0.3
-------------------------------------------------------- 0.015

0.001
0.075
-------------

21.43 0.809–
0.809

---------------------------------
1.5

0.001
2650 1000–( )9.81

1000x 10
6–( )

2
---------------------------------------------

1
3
---

 
 
 
 
 

0.3
--------------------------------------------------------------------------------=



Numerical Modelling and Hydraulics                                                                                                         165
The sum of the cell fluxes is: 0.14. This can be multiplied with the bed 
concentration to give the sediment transport in m2/s. Then multiplied 
with the density, we get the sediment transport in kg/s/m:

    qs = 0.14* 0.009756758*2650 = 3.6 kg/s/m.

Note that the height of the cell closest to the be has only been set to 
0.075 m, although it is 0.15 meters. This is because the sediment trans-
port below the reference level is considered bed load, and computed by 
the bed load formula.

Total load according to van Rijn is then:

    qt = 3.6 + 6.08 = 9.7 kg/s/m.

Also note that there are only four layers in the vertical direction. If 11 lay-
ers had been used, we would have gotten 2 % higher result for the sus-
pended load.

In our case, the results by van Rijn’s method and Engelund-Hansens for-
mula are very similar. This is normally not the case. Often, results from 
different sediment discharge formulas may deviate with a factor 2-3 or 
more.  

Table 2: 

Cell 
no.

Distance 
from bed

Velocity Hunter Rouse 
concentration

Cell 
height

Cell flux

4 1.275 2.77 6.22E-06 0.45 7.7E-06

3 0.825 2.61 0.0003168 0.45 0.00037

2 0.375 2.32 0.00883 0.45 0.00923

1 0.075 1.73 1 0.075 0.130
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Appendix IV: An introduction to program-
ming in C

This chapter is written as a brief introduction to C programming for stu-
dents who has not had previous courses on programming.

A computer program is written as text file using an editor. In the text file, 
different commands tells the computer what to do. This text file is often 
called a source code. The text file needs to be transformed into a com-
puter program. The file containing the computer program is often called 
the executable file. The transformation of the text file to the executable 
file is done using a compiler. Depending on the language of the text file, 
different compilers are used. For the C language, we need a C compiler. 
In the present course we will use the LCC compiler, which is freeware. 

The C program consists of the following structure: 

main () {

Variable declarations

Commands on what to do

}

Note the brackets, which are necessary. Omitting one leads to the com-
piler giving an error message, and the executable is not produced. 

Variable declarations

To make the program compute something, we need to declare variables. 
In a spreadsheet, a variable is named after its address, for example b12. 
In C, we can give any name to a variable. For example: 

int counter;
double flux;

The variable named counter is declared as an integer, and the variable 
flux is declared as double, a floating point number with 12 digits preci-
sion. Note the ; after each declaration.

It is also possible to declare arrays of integers or floats: 

double velocity[100], depth[100];

If we have 100 cross-sections in a river, the velocity in section 14 is 
given as velocity[14]. 

We can also use multi-dimensional arrays: 

double discharge[2][100];

In C, the first number in the array is zero, and the last array in the arrays 
above is 99, if decreased with 100 elements.
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We can also declare files with different names, used to read input-data 
from and write output-data to: 

FILE * input: 
FILE * result;

Note the * that needs to be included for the files.

A file needs to be opened before we can read from it. The syntax for this 
is: 

input = fopen("inflow","r");

Similar for a file we want to write to: 

result = fopen("outflow","w");

The file names are here given as inflow and outflow. These are text files.

After writing to a file, it needs to be closed for other programs to read 
from it: 

fclose(result);

To read information from a file to a variable, the following syntax is used :

fscanf(input,"%lf",&depth[1]);

Note the syntax. If this is not correct, the compiler will produce an error 
message, or the program will not work.

Similarly, the following syntax is used to write to files: 

fprintf(result,"%lf ",velocity[0]);

Note the & is used when reading data and not when writing data to files.

Commands

The program is made up of a series of commands. They will be carried 
out in the same order as given in the file. There are several types of 
commands. 

Variables can be initialized using the = operator. For example: 

velocity[0] = 2.0; 

Variables can be incremented. For example, in the following, the variable 
counter will increase its value by one: 

counter = counter + 1;

If count was 3 before this line, it will be 4 afterwards. Incrementing an 
integer with one can also be written 

counter++;

This does the same as the line before.

A typical command is to write a formula: 
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velocity[1] = discharge / depth[1]; 

A formula can be long and complex, and one can use * for multiplication, 
and + and - for addition and subtraction. Also, one can use brackets in 
complex formulas, to several levels: 

velocity[1] = discharge / (depth[1] + 1.0e-20); 

The above formula is a trick to avoid errors if depth[1] is zero.

Repetition of formulas over many cross-sections is done in a loop. There 
are different types of loops, but the for loop is often used. The following 
loop repeats the above formula for all the 100 cross-sections in the river, 
starting from cross-section no. 0 to cross-section no. 99: 

for(counter = 0; counter <100; counter++) {

      velocity[counter] = discharge / (depth[counter] + 1.0e-20); 

}

Several formulas can be used inside a loop, and it is also possible to 
nest several loops inside each other.

An if sentence can be used to give a special logic. For example: 

if ( froude > 1.0 ) {
 
    depth = 2.0;

}

An if sentence can also be used to break out of a loop:

for(counter = 0; counter <100; counter++) {

      if ( depth[counter] < 1.0e-20) break;

      velocity[counter] = discharge / depth[counter]; 

}

This loop will be stopped if depth is below 10-20, even if counter has not 
reached 99. The program will then jump out of the loop and do the next 
thing in the file.

Remember that the syntax is very important. One wrong type of brack-
ets, for example, will give a compiler error. 

The introduction given above is only a very small fraction of all the com-
mands, declarations etc. available in C. For more details, a textbook on 
C programming should be consulted.
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Appendix V: Diffusion equation

We want to find a physical explanation of the equation for the diffusive 
flux: 

                                                                           (V.1)

We are looking at a channel with turbulent flow, as shown in the figure 
below. The average water velocity is zero, but there is turbulence in the 
channel, illustrated in the figure by an eddy. The particle concentrations 
in points 1 and 2 are constant, and the turbulence transports particles 
between 1 and 2 with a certain rate. This is the flux: number of particles 
pr. time unit. 

The cross-sectional area of the channel is called A, and the distance 
between point 1 and 2 is x. 

From a physical point of view, the area A, in Eq. V.1 must be correct. If 
we have two channels beside each other, there will be twice as many 
particles transported in the x direction. The flux must therefore be pro-
portional to A. 

If we have an equal amount of particles in points 1 and 2, then there will 
be no net flux between the points. The flux must therefore be a function 
of the difference between the particle concentrations in point 1 and 2. 

If we double the number of particles in 1 and 2, the flux will also double. 
Therefore, the flux must be proportional to the concentration gradient: 
c1-c2. 

Why is the flux inversely proportional to the distance, x, between point 1 
and 2? To see this, we consider the situation with three points in the flow, 
as given in figure V.1

For a steady situation with constant concentrations in points 1, 2 and 3, 
we have also the same flux between point 1 and point 2 as between 
point 2 and 3. This means the concentration difference between point 1 
and 2 is the same as between point 2 and 3. The concentration differ-
ence between point 1 and 3 is therefore twice as high as the concentra-

F ΓA
dc
dx
------=

Eddy
1 2A

   x

Figure V 1. 
Sketch for 
explenation 
of flux from 
turbulent dif-
fusion.
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tion difference between point 1 and 2. Or between point 2 and 3. 

Therefore, the flux can not be proportional to the concentration differ-
ence directly. If we divide the concentration difference with the distance, 
we get a concentration gradient. The flux must be proportional to the 
concentration gradient. Which is what is given in Eq. V 1.

Eddy
1 2A

   dx

3

   dx

 Eddy

c

c1

c2

c3

x

Figure V 2. Sketch for explenation of flux from turbulent diffusion.
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