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CFD Algorithms for Hydraulic Engineering Foreword
Foreword

After finishing my CFD Class Notes (Olsen, 1999), I realized there were a number of 
topics not included in this basic text. Although there exist a number of books on CFD 
modelling, I thought it would be practical to have a book with a detailed and hopefully 
simple description of the more advanced topics for CFD in Hydraulic Engineering. It 
would provide a general insight into the workings of a CFD program as an advice to 
both users and people making new programs. The book also gives some insight into 
my research over the last years, and I hope it can give inspiration to further research 
in this field. Finally, it provides documentation of many of the algorithms in my SSIIM 
computer programs.

Unlike the CFD Class Notes, the present text is only focused on the finite volume meth-
od. I have included details of topics I think is relevant for hydraulic engineering. This 
applies especially to grid generation, roughness modelling and sediment transport. 

I want to thank Prof. Morten Melaaen for his kind assistance and cooperation over the 
last ten years. I have relied heavily on his doctoral thesis in Chapter 4. I also want to 
thank Koen Blanchaert on assistance in collecting information for Chapter 6.11, bed 
load transport on a transverse sloping bed.

Examples where the algorithms have been used are numerous, but I have only pre-
sented a limited number in this text. The reader is referred to the list of literature at the 
end, the CFD Class Notes (Olsen, 1999) or one of the several web pages on CFD in 
hydraulic engineering, for example www.bygg.ntnu.no/~nilsol/cfd.
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CFD Algorithms for Hydraulic Engineering 1. Introduction

Examples of hydraulic e

- Lake circulation (Simon
- Flow pattern in a river 
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- Flow around groynes (
- Sediment deposition in
- Local scour (Olsen and
- Channel morphology (W
- Determination of coeff

1998; Spaliviero and Ma
- Reservoir flushing (Ma
- Algae movements in a 
1. Introduction

In recent years the science of Computational Fluid Dynam-
ics has found its way to Hydraulic Engineering. A large 
number of hydraulic problems have been solved using 
CFD. Examples are given in the box below.

There exist a number of commercial, general-purpose CFD 
programs to solve fluid flow problems. However, Hydraulic 
Engineering poses many special problems requiring solu-
tions not included in the general codes. A CFD program tai-
lor made for Hydraulic Engineering, such as SSIIM, 
incorporates many special algorithms. It is the purpose of 
the present book to provide an insight into these. Some of 
the more basic text is also included, to provide background 
for the special algorithms

The next chapter gives a description of the various grids, 
with definitions and generation procedures. Algorithms for 
generation of structured and unstructured grids are de-
scribed, together with adaptive grid movements in vertical 
and horizontal directions, used in wetting/drying problems. 
Adaptive grid cell shape changes are also described.

The third chapter describes the convection-diffusion equa-
tions. The chapter is similar to the information given in the 
CFD Class Notes. 

The fourth chapter describes the Navier-Stokes equations. 
A more advanced approach is used, compared with the 
CFD Class Notes. Discretization of all the terms are given 
in detail, and tensor calculus is used together with the pre-
viously used discretization by physical information.
6
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CFD Algorithms for Hydraulic Engineering 1. Introduction
The fifth chapter provides information about algorithms 
particularly used in Hydraulic Engineering. 

The sixth and last chapter describes sediment transport 
modelling algorithms, including suspended load, bed load, 
bed movements, bed forms, critical shear stress, multiple 
grain sizes etc. 
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Fig. 2.1.1 Triangular and
grid shapes

Fig. 2.1.2 Orth
2. Grids

One of the main concepts behind CFD is to divide the water 
geometry into small cells. Equations for velocity, turbu-
lence, water quality, sediment concentration etc. are then 
solved for each cell. The cells are obtained by dividing the 
water body into a grid. The composition and quality of the 
grid is important for the accuracy and stability of the solu-
tion of the equations.

2.1 Classifications

Grids can be classified according to several characteris-
tics:

shape
orthogonality
structure
blocks
position of variable
grid movements

The shape of the cells is usually triangular or quadrilater-
al in 2D: 

In 3D, the cells are tetrahedral (four sides) or hexahedral 
(six sides).

The orthogonality of the grid is determined by the angle 
between crossing grid lines. If the angle is 90 degrees, the 
grid is orthogonal. If it is different from 90 degrees, the grid 
is non-orthogonal. 

 quadrilateral 

ogonal grid (left) and non-orthogonal grid (right)
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Fig. 2.1.3 Non-orthogo-
nal coordinate system 
following the grid lines. 

Fig. 2.1.4 Structured grid 
For non-orthogonal grids, a non-orthogonal coordinate sys-
tem is often used to derive terms in the equations. The co-
ordinates then follow the grid lines of a structured grid. The 
three non-orthogonal coordinate lines are often called 
x,y,z, corresponding to x,y and z in the orthogonal coordi-
nate system. This is also shown on the figure below:

Grids can be structured or non-structured. Often a struc-
tured grid is used in finite volume methods and an unstruc-
tured grid is used in finite element methods. However, this 
is not always the case. The figure below shows a structured 
and an unstructured grid. In a structured grid it is possible 
to make a two-dimensional array indexing the grid cells. If 
this is not possible, the grid is unstructured. Almost all grids 
using triangular cells are unstructured. 

A multi-block grid is a made from several structured grids 
as shown on the figure below.

An adaptive grid moves according to the calculated flow 
field or the physics of the problem. When the water surface 
or the bed moves during a time step, it is possible to make 

x

y

z

ξ

ψ

ζ

(left), unstructured grid (middle) and multi-block grid (right)
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Fig. 2.2.1. Grid generation
attraction (middle) and at
the grid move accordingly, to calculate the situation for the 
new geometry. Thereby time-dependent calculations of 
bed changes and water levels can be done. 

An adaptive grid is used to model bed changes in for exam-
ple sediment deposition, reservoir flushing or local scour. It 
is also used to model changes in the water surface when 
for example calculating a flood wave. 

2.2 Structured grid generation

There are a number of different methods to create the in-
ternal points in a structured grid. The most used are trans-
finite interpolation and elliptic grid generation. Transfinite 
interpolation generates straight lines in one of the grid di-
rections. Elliptic generation distributes the points more 
smoothly. This is done by solving a Laplace or Poisson 
equation for the location of the grid line intersections:

(2.2.1)

The location of the grid lines are denoted x. P is a source 
term used for attracting grid lines to a side or a point. An ex-
ample of using elliptic grid generation is given below: 

The left grid is made by use of transfinite interpolation. This 
means that straight lines are made between the points on 
the wall. 

∇2ξi
P

i
=

 by transfinite interpolation (left), elliptic generation with no 
traction to the left boundary (right)
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Elliptic procedures are used to obtain the middle grid in Fig. 
2.3.1, with no attractions. This means P=0 for Equation 
2.3.1.

Looking at the lower point of the step, the cells are smaller 
closer to the wall. This is due to attraction functions. P > 0 
for Equation 2.2.1.

The solution of Eq. 2.2.1 is explained in detail by Thomp-
son et. al. (1985). 

2.3 Unstructured grid generation

The advantages of the unstructured grid for modelling com-
plex geometries is evident. Algorithms to generate 3D grids 
based on tetrahedral cells are numerous, and are included 
into most commercial CFD programs. However, hexahe-
dral cells gives higher accuracy and speed of the calcula-
tion. The present-day automatic methods to generate 
unstructured hexahedral grids for general problems seems 
not to be very successful. However, in hydraulic engineer-
ing the nature of the problem often makes it possible to rap-
idly generate an unstructured hexahedral grid manually. 
The process is based on the knowledge of the geometry 
and insight into the flow problem. 

In the following, such a method will be described. The 
method is used in the SSIIM 2 program, and has been suc-
cessfully applied to several hydraulic engineering flow 
problems.

Domain decomposition in structured blocks

Modelling a natural river or a lake, there are some basic 
characteristics of the domain. The vertical dimensions are 
usually much smaller than the horizontal dimensions. It is 
therefore possible to use completely vertical grid cells in 
one direction, without causing too non-orthogonal angles 
between the grid lines. The advantage is that the 3D grid 
can be made relatively fast by first generating a 2D depth-
integrated grid. The grid distribution in the vertical direction 
is described in the next chapter.

Generating the 2D depth-averaged grid, the geometry can 
be very complex. However, often rivers or long parts of 
lakes will have a relatively constant width. Usually, there is 
also a dominant flow direction along the longest side of a 
sub-domain. It is then convenient to use a structured grid 
11
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Figure 2.3.1 The left figure
right figure to form an uns

Figure 2.3.2. Grid of Lake
from above. The grid is ma
and two islands are model
grid was used to model di
oactive pollutant by wind-i
(Olsen and Tjomsland, 19
for each such part. The advantage is that the cells can be 
made longer in the dominant flow direction, where there 
are smaller gradients. Also, the grid alignment will de-
crease false diffusion.

In the approach used by SSIIM 2, the user generates 
blocks of structured grids graphically, and connects these 
afterwards. The process is relatively fast, and a complex 
grid can be generated in a couple of hours. An automati-
cally generated unstructured grid will usually have lower 
qualities, so the extra work by the user is often justified.
 
An example is given below.

Using several blocks, a relatively complex geometry can 
be made. An example is given below:

 shows two structured blocks. These are connected on the 
tructured grid. 

 Tyrifjorden, seen 
de of eight blocks, 
led in the grid. The 
spersion of a radi-
nduced currents. 
98) 
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Figure 2.4.1 Orthogonal 
unstructured grid

Figure 2.4.2 Non-orthog-
onal unstructured grid, 
with triangular (tetrahe-
dral in 3D) cells close to 
the bed

A

Figure 2.4.3 Different cell 
2.4 Vertical distribution of grid cells for an 
unstructured grid

The 3D grid is based on extending the 2D depth-averaged 
grid with more cells in the vertical direction. Different algo-
rithms can be used to distribute the cells, depending on the 
purpose of the CFD computation. If the flow field is influ-
enced by thermal stratification, instabilities can occur if the 
horizontally neigbouring grid cells are not on the same lev-
el. Looking at a cross-section of the grid, it must therefore 
be generated orthogonally:

If there is no thermal stratification, it is possible to use non-
orthogonal grids in a cross-section. Triangular cells can 
also be used to model a complex bed geometry, for exam-
ple like this:

The grid is made up of cells with different number of sides. 
Figure below shows four types. 

A CFD model is often used for calculating sediment trans-
port. The most important processes then takes place close 
to the bed. To get as good connection between the bed 

B C D

shapes, depending on the number of sides
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Figure 2.4.4 Unstructured 
non-orthogonal grid with 
quadrilateral (hexahedral 
in 3D) cells close to the 
bed

1

3

 Figure 2.5.1. Grid seen fr
shown for four different tim
cells as possible, it is preferred to use hexahedral cells 
close to the bed. Such a grid is given below: 

2.5 Transient grid changes

In many hydraulic situations, the water depth change due 
to varying water levels or sediment deposition or erosion. 
The number of grid cells in the vertical direction may then 
change, if an unstructured grid is used. Olsen (1999) used 
such a grid to model reservoir flushing. Then the grid was 
regenerated every 10th iterations. The values from the old 
grid was transferred the new grid before starting the calcu-
lation in the new time step. The estimate was based on lin-
ear extrapolation or interpolation in the vertical direction.

An example of such grid changes are given in Fig. 2.5.1:

Level 2

Level 2

2

  4

om above for computation of reservoir flushing. The grid is 
es. 
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B

Figure 2.6.1  M
Inflow/outflow locations 

In an unstructured grid, it is difficult for the user to give the 
cell numbers when specifying the location of inflow and 
outflow of the geometry. Therefore, this is often done 
graphically, where the user interface of the CFD program 
calculates the cell numbers of the inflow and outflow cells. 
The cell numbers are stored in arrays, being used when 
giving the boundary conditions in the CFD model.

When the unstructured grid changes over time, the cell 
numbers are reassigned. Special algorithms are therefore 
needed to calculated the cell numbers of the inflow and out-
flow boundary. This can be based on fixed coordinates of 
the location of the initial boundary. Search algorithms are 
used for the boundary cells, to find the matching cell walls. 

2.6 Changes in grid cell shapes

During changes in the bed and water levels, the horizontal 
location of the boundary of a geometry may change. If the 
grid cells have a fixed horizontal location, some grid cells 
may be removed or added, as described in the previous 
chapter. One problem may then be the edges of a grid 
boundary, where the side would otherwise be smooth. 

One way to reduce this problem is to change the shape of 
the grid cells at the boundary. This is done according to the 
calculated water depths at the corners of the cell. The grid 
cell is deformed by moving a cell corner where the bed is 
above the water level. The movement of this “dry” cell cor-
ner can be divided in two cases: 

- Movement of a free corner 
- Movement of a boundary line.

The movement of a boundary line is described in Fig. 
2.6.1.

A

 A

  B

ovement of grid sides
15
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The dry point A is moved in direction of the submerged 
point B. The magnitude, δ, of the movement is calculated 
from Eq. 3: 

(2.6.1)

The original distance between A and B is denoted δ0, and 
∆A and ∆B is the vertical distance between the water sur-
face and the bed at point A and B.

For a corner, the algo-
rithms become slightly 
more complex, but the 
same principle is used. 
The algorithms are 
based on the location 
of the border and the 
depth of the corner of 
each cell. Fig. 2.6.2 
shows a dry corner, A, 
and a two adjacent wet 
corners B and C. 
The corner point A is moved towards B or C, and Eq. 2.6.1 
is applied similarly as for a side point. The choice of moving 
towards B or C is made from the vertical distance, ∆, be-
tween the bed and the water surface of the two points. 

The horizontal grid cell deformation algorithm could poten-
tially cause problems if the cells became very small, lead-
ing to high expansion ratios in the grid. Instabilities and 
unphysical results could follow. The problem is prevented 
by not allowing δ to become smaller than 0.5 * δ0 in Eq. 
2.6.1. 

2.7 Nested grids

Many hydraulic phenomena involves processes at different 
scales. One example is pollution from point-source into a 
lake. The lake may have dimensions of kilometers, while 
the plume of the pollution may be in the orders of meters 
wide. The grid of the lake may have cell sizes of the order 
of hundreds of meters, and can not resolve the concentra-
tion profile of the pollution. A solution is then to use a nest-
ed grid. A coarse grid covers the lake, while a fine grid is 
located inside the coarse grid and only covers the pollution 
plume. Interpolation functions transfer informations like the 
velocity field and turbulence from the coarse grid to the fine 
grid. 

δ δ0

∆A

∆A ∆+ B( )
------------------------=

         AC

B

Figure 2.6.2 Movement of grid
corner A
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Figure 2.5.1. Nested grid
side the coarse grid of L
Tyrifjorden (Fig. 2.3.1). T
nested grid is located in
area where the pollutant
disperse.
Other examples where nested grids can be used are local 
scour in a wide river, where the fine grid covers the em-
bankment or bridge pier area, and the coarse grid covers 
the whole river. The nested approach can also be used 
modelling spillways, where the spillway crest is modelled 
with a fine grid. The coarse grid covers the reservoir/lake, 
estimating the inflow boundary condition for the spillway. 

The nested grid can be generated in two ways, depending 
on the alignment of the grid lines:

- The coarse grid cells can be divided in smaller sizes
- An arbitrarily aligned grid can be used

The advantage of the first approach is better stability and 
coupling between the grids. The advantage with the sec-
ond approach is a more flexible layout of the nested grid. 
Also, it is possible to make the nested grid move horizon-
tally in the coarse grid as a function of time or a computed 
variable.

The main concern with the second approach is to interpo-
late the values from the coarse grid to the fine grid for use 
as boundary condition. An upwind method can be used. 
The velocity on the boundary of the nested grid is first inter-
polated from the surrounding cells in the coarse grid. Then 
the velocity vector is used to find the cell in the upstream 
direction. 

 in-
ake 
he 

 the 
 will 
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Figure 2.7.2 Upwind inter-
polation to the surface A in
the nested grid (thin lines)
from the coarse grid (thick
lines). The vector is the ve
locity in point A. The value
on the boundary in point A
is taken from the coarse 
cells B and C, as a function
of how close the velocity 
vector is to the points.
A
B

C

 
 
 
-

s 
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3. The convection-diffusion equation

3.1 Introduction

The movement and dispersion of suspended sediments, 
temperature, a pollutant etc. in a water body is described 
by its convection-diffusion equation. The equation is in 
general the same for almost all water quality parameters, 
and its solution procedure is therefore described separate-
ly in this chapter.

The convection-diffusion equation for steady sediment 
transport is:

(3.1.1)

The sediment concentration is denoted c, w is the fall ve-
locity of the particles, U is the water velocity, x is a space 
dimension and G is the turbulent diffusivity. The three di-
rections are x1, x2 and x3, and the velocities in the three di-
rections are U1, U2 and U3. 

The Einstein summation convention/tensor notation is 
used, meaning repeated indexes are summed over all di-
rections. For three-dimensional flow this means that the 
equation can be written:

(3.1.2)

Here, x, y and z are used in the tree directions instead of 
x1, x2 and x3, and U, V and W are used instead of U1, U2 
and U3.

Transport processes

There are two main transport processes: convection and 
diffusion. The convection is a movement by the average 
water velocity. The transport because of the fall velocity of 
the sediment particles is also a type of convective trans-
port. When calculating the flux, F, through a given surface 
with area A, the following formula is used:

     F = c * U * A (3.1.3)

Uj
∂c
∂xj
------- w

∂c
∂z
-----+

∂
∂xj
------- ΓT

∂c
∂xj
------- 

 =

U
∂c
∂x
----- V

∂c
∂y
----- W

∂c
∂z
----- w

∂c
∂z
-----+ + +

∂
∂x
----- ΓT

∂c
∂x
----- 

  ∂
∂y
----- ΓT

∂c
∂y
----- 

  ∂
∂z
----- ΓT

∂c
∂z
----- 

 + +=
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Discretization is:
U is the average velocity of the sediments normal to the 
surface, and c is the average sediment concentration over 
the area. The sediment velocity will be the sum of the water 
velocity and the sediment fall velocity. 

As an example, we can look at a uniform flow, with zero 
vertical water velocity. If the surface is vertical, the sedi-
ment fall velocity component is zero normal to the surface. 
Then the velocity U will be equal to the horizontal water ve-
locity. If the surface is parallel to the bed/water surface, 
then the water velocity component normal to the surface 
will be zero. The velocity U in Formula 3.1.1 will then be 
equal to the fall velocity of the sediment particles. 

The other process is the turbulent diffusion of sediments. 
This is due to turbulent mixing and concentration gradients. 
The turbulent mixing process is usually modelled with a tur-
bulence mixing coefficient, Γ, defined as the sediment flux 
divided by the concentration gradient:

(3.1.4)

Normally, the convective transport will be dominating. But 
in some cases, the diffusive transport is important. An ex-
ample is the reduced settling in a sand trap because of tur-
bulence.
 
The processes and Formulas 3.1.1 and 3.1.2 will be used 
extensively in the following description of the finite volume 
method. 

3.2 The First-Order Upstream Scheme

The discretization described here is by the control volume 
method. 

The main point of the discretization is:

To transform the partial differential equation into a new 
equation where the variable in one cell is a function of the 
variable in the neighbour cells

The new function can be thought of as a weighted average 
of the concentration in the neighbouring cells. For a two-di-
mensional situation, the following notation is used, accord-
ing to directions north, south, east and west:

Γ

F
A
--- 

 

dc
dx
------ 

 
-----------=
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cn

ce

cs

cpcw

Figure 3.2.1 Discretiza-
tion molecule. Computa-
tion of concentration, c, 
in the center cell, p, as a 
function of the concentra-
tion in the neighbouring 
cells n, s, e and w.

Development of CFD 
algorithms was ini-
tially done in aeronau-
tics. The fluid was air, 
and the methods 
were then called 
upwind instead of 
upstream. Both 
expressions are used, 
meaning the same.
:
ae : weighting factor for cell e
aw : weighting factor for cell w
an : weighting factor for cell n
as : weighting factor for cell s
ap = ae+aw+an+as

The formula becomes:

(3.2.1)

The weighting factors for the neighbouring cells ae, aw, an 
and as are often denoted anb

What we want to obtain are formulas for anb. 

There are a number of different discretization methods 
available for the control-volume approach. The difference 
is in how the concentration on a cell surface is calculated. 
Some methods are described in the following.

In a three-dimensional computation, the same principles 
are involved. But two more neighbouring cells are added: t 
(top) and b (bottom), resulting in six neighbour cells. The 
simple extension from 2D to 3D is one of the main advan-
tages of the finite volume method.

For a non-staggered grid, the values of the variables are 
given in the center of the cells. Using the finite volume 
method, it is necessary to estimate variable values on the 
cell surfaces. The main idea of the upstream methods is to 
estimate the surface value from the upstream cell. The first 
order method uses information in only one cell upstream of 
the cell surface. In other words: the concentration at a cell 
surface for the first-order upstream method is the same as 
the concentration in the cell on the upstream side of the cell 
side. 

The control volume method is based on continuity of sedi-
ments. The basis of the calculation is the fluxes on a cell 
surface. The surface area is denoted A; the velocity at the 
surface, normal to it, is denoted U; c is the concentration at 
the surface, and Γ is the turbulent diffusion at the surface.

The convective flux is calculated as: U * A * c (3.2.2)
The diffusive flux is calculated as: Γ * A * dc / dx(3.2.3)

The term dc/dx is calculated as the concentration differ-
ence between the cells on each side of the surface, divided 
by the distance between the centres of the cells. Looking at 

cp

awcw aece ancn ascs+ + +

ap
---------------------------------------------------------------------=
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dy

Figure 3.2.2 Fluxes 
through the walls of 
the center cell in a 
computational mole-
cule. The cells have a 
width dx and a height 
dy. 
the west side of cell p, Fig. 8.3.1 explains the variable loca-
tions and the fluxes in the center cell P.

The flux, Fw, through the west side of cell P then becomes:

(3.2.4)

where Aw is the area of the cell wall on the west side, equal 
to ∆y times the height of the wall. For the other sides, the 
following fluxes are obtained:

(3.2.5)

(3.2.6)

(3.2.7)

Sediment continuity means the sum of the fluxes is zero, in 
other words:

(3.2.8)

This gives the following equation:

       (3.2.8)

cw cp ce

cs

cn

UeUw

Us

 Un

Γw Γe

Γn

Γs

dx

Fw UwAwcw Γw

Aw cw cp–( )
dx

-----------------------------+=

Fe UeAecp Γe

Ae cp ce–( )
dx

---------------------------+=

Fs UsAscp Γs

As cp cs–( )
dy

--------------------------+=

Fn UnAncn Γn

An cn cp–( )
dy

---------------------------+=

Fw Fe– Fn Fs–+ 0=

UwAw UeAe Γe

Ae

dx
------ UsAs Γs

As

dy
------ Γn

An

dy
------+ + + + + 

  cp

UwAw Γw

Aw

dx
------+ 

  cw Γe

Ae

dx
------ 

  ce

An  As 

+ +=
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When we compare Equation 3.2.1 with Equation 3.2.8, we 
see they are the same. The concentration in Cell P is a 
function of the concentration in the neighbouring cells. The 
resulting weighting factors are:

(3.2.9)

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)

The water continuity equation for the grid cell is: 

(3.2.14)

or:

(3.2.15)

If the above equation is inserted into the expression for ap, 
the equation

(3.2.16)

is verified to be correct.

Note that the equations above are only valid if the velocity 
flows in the same direction as given on the arrows in the fig-
ure above. 

3.3 The Second Order Upstream Scheme

The Second-Order Upstream (SOU) method is based on a 
second-order accurate method to calculate the concentra-
tion on the cell surfaces. The method only involves the con-
vective fluxes, and the diffusive terms are calculated as 
before. The following figure shows the calculation of the 
concentration on the west side of cell p: side W:
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Concentra

cww

cw

Figure 3.3.1 Def-
inition sketch for 
concentration 
estimation at the 
wall for the SOU 
scheme.

 WW   W        P     E    EE

  S

 SS

 N

NN

Figure 3.3.3 SOU nine-
point calculation mole-
cule
The cell on the west side of cell w is called cell ww. The 
concentration in this cell is denoted cww. The concentration 
in cell w is denoted cw and the concentration on side W of 
cell p is denoted cW. The SOU scheme uses the concen-
tration in cell ww and cell w to extrapolate linearly to side 
W. Given the width of the cell in the x-direction is dx, and 
the height in the y-direction is dy, it is possible to derive a 
formula for the concentration on side W by triangulation:

(3.3.1)
 
or

(3.3.2)

Equation 8.6.1 is only valid if the cells are of equal size. If 
the expansion ratio is different from unity, a separate for-
mula needs to be applied, where the coefficients 3/2 and ½ 
are given as a function of the expansion ratio. 

The calculation molecule now gets nine cells, as shown in 
the figure to the left

The flux through the west side of Cell P then becomes:

(3.3.3)

 For the other sides, the following fluxes are obtained:

(3.3.4)

(3.3.5)

(3.3.6)
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Again, the equations are only valid if the velocity vectors 
are in the same direction as in Fig. 8.3.1. The weighting 
factors becomes:

(3.3.7)

(3.3.8)

(3.3.9)

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)

(3.3.14)

For the SOU scheme, Equation 3.3.1 now becomes:

    

 (3.3.15)

The formula is used for a two-dimensional situation. In 3D, 
the terms for top and bottom is also added, giving four extra 
coefficients: at, att, ab, abb.
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4. The Navier-Stokes equations

4.1 Introduction

The Navier-Stokes Equations describe the velocity and 
pressure fields in a water body. The equations were devel-
oped for laminar flow, but using the Reynolds-averaging 
and a turbulence model, the equations also describe turbu-
lent flow. 

The CFD Class Notes (Olsen, 1999) only gave an overview 
of some of the general-purpose algorithms used in CFD. 
The purpose of this chapter is to extend this with more in-
depth details, especially with respect to numerical imple-
mentation of the Navier-Stokes equations:

           

       1           2                         3     4                   5          6

(4.1.1)

The integers below the equation indicates the six terms. 
The first term is the transient term. Its discretization is given 
in Chapter 3.2. The convective term 2, and the diffusive 
term 5 is discretized similarly as for the convection-diffu-
sion equation. The pressure term 3 and term 4 is usually 
solved together, as one unknown variable. Also, Term 4 is 
usually several orders of magnitude lower than the pres-
sure, so it would not be a problem to neglect it altogether. 
The discretization of Term 6 is given in Chapter 4.8.

Basic discretization methods are given in Chapter 4.2 and 
4.3. 

4.2 Discretization by coordinate transforma-
tion

The control-volume method offers two methods to discre-
tize equations. One method is to look at physical processes 
and parameters, and thereby derive the discretized equa-
tions. This approach is used by Olsen (1999). The method 
has the advantage of being easy to understand, facilitating 
debugging and implementation of new algorithms. Howev-
er, three groups of terms are difficult to derive using a phys-
ically based method: 

∂Ui

∂t
--------- Uj

∂Ui

∂xj
---------+

1
ρ
--- ∂

∂xj
------- P

2
3
---k+ 

  δij– νT

∂Ui

∂xj
---------

∂Uj

∂xi
---------+ 

 +=
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ψ

(1,1)                  (2,1)          

(2,4)

Figure 
mensio
- The production of turbulence in the k-ε model. 
- The stress terms in the Navier-Stokes equations
- The non-orthogonal diffusive terms in the Navier-Stokes 
equations

The terms are therefore usually discretized using a method 
called coordinate transformation. The basis of the method 
is given in the following.

The coordinate transformation is a transformation between 
the natural cartesian coordinate system and a system fol-
lowing the computational domain. Fig. 4.2.1 shows the two 
systems in 2D. Additionally, the third direction will be z in 
the cartesian system and ζ in the computational domain.

The three directions along the computational domain are 
often called (ξ,ψ) in 2D as shown in the figure above, or 
(ξ,ψ,ζ) in 3D, where the last index is the vertical direction. 
In the CD system, the distance between the grid lines are 
often set to unity, so it is easy to calculate gradients of var-
iables. It means all δξ will be unity.

An important definition is the notation of the variables at a 
cell. Instead of using x,y and z directions, the non-orthogo-
nal cell now uses the directions north, south, east, west, 
bottom and top. Another definition is to use indexes, as in 

ξ

y

x

         (3,1)

(3,3)

(4,4)

 (4,1)

4.2.1 The two coordinate systems are shown in two di-
ns, where some values of ξ and ψ are given in brackets
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Example: 

A1
 is the area of the cell 

wall in the east-west di-
rection

Examples:

A1
2 : The area compo-

nent in the y-direction of 
the cell wall in the east-
west direction.

A3
1 : The area compo-

nent in the x-direction of 
the bottom/top cell wall.
tensor notation. Then direction 1 is east-west, direction 2 is 
north-south and direction 3 is vertical. Using tensor nota-
tion, (ξ,ψ,ζ) can also be written (ξ1,ξ2,ξ3).

The surface of a cell side is denoted A. It may have two in-
dexes. An upper index indicates which side it is, as given 
above. 

It is also possible to define areas through the center of the 
cell. These can be though of as averages of the two side 
walls. 

A may also have a lower index, the area component in x,y 
or z direction. It is obtained by multiplying A with the com-
ponent of the vector normal to the surface. 

A useful formula for the discretization is the chain rule. 
Transforming the terms from one coordinate system to an-
other, the following formula is used:

(4.2.1)

This can be transformed as follows

(4.2.2)

V is the volume of the cell. The second step in Eq. 4.2.2 iso-
lates the velocity gradients from the geometric terms. The 
third step can be derived using the Jacobi Matrix, and is fur-
ther described by Melaaen (1990). From a physical point of 
view it seems logical, as the formula for the volume of a cell 
can be calculated as the area, A, times the distance ∆x nor-
mal to the area. The fourth step defines ω, a shorter way of 
writing the term, which will be used later. Note that sum-
ming up over j gives three terms: 

         (4.2.3)

Also note  can be chosen.
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4.3 Discretization of source terms

The source terms of the convection-diffusion equation may 
be fluxes of sediments flowing into the geometry. For the 
Navier-Stokes equations, the sources are forces on a cell, 
for example gravity or body forces from obstacles in the 
flow. There are different ways to discretize the source 
terms, giving more or less stable solutions. 

The convection-diffusion equation for sediment concentra-
tion is derived from continuity. The source term from add-
ing sediments is therefore the sediment flux into the cell:

. (4.3.1)

The Navier-Stokes equations are based on Newton’s 2nd 
law, and the source terms are forces on a cell:

(4.3.2)

If the force is a pressure difference, the term could for ex-
ample be discretized as:

(4.3.3)

When the force is a function of the velocity, there are differ-
ent ways of discretizing it. As an example, the force from a 
cylinder on the flow is considered:

(4.3.4)

CD is the drag coefficient, ρ is the water density and A is the 
cross-sectional area of the body, normal to the direction of 
the flow.

Incorporating the formula in the equation gives:

(4.3.5)

The problem in evaluating the source term is that Up is un-
known. A possible solution would be to use Up at the previ-
ous iteration. This could work, if the forces are small. If the 
forces are large, the approach could lead to instabilities. 
The alternative is to move the term to the other side of 
Equation 4.3.2:

apcp anbcnb Fluxp+
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Forcep Pe Pw–( )
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(4.3.6)

or

 
(4.3.7)

This formula is much more stable, as the source term will 
increase the value of the ap coefficient. The two approach-
es are two solutions to the problem of linearize the source 
terms, meaning in practice to keep the source term as it is 
or put it into the ap term. It is also possible to keep some in 
the source term and put the rest into ap. For stability rea-
sons, it is better to choose the option that keep the ap term 
as large as possible. 

A further discussion of the source term discretization is giv-
en by Patankar (1980).

4.4 The SIMPLE method

SIMPLE is an acronym for Semi-Implicit Method for Pres-
sure-Linked Equations. The original description was given 
by Patankar and Spalding (1972). Patankar (1980) gives a 
very readable explanation of the method. The SIMPLE 
method and its extensions are used in most CFD calcula-
tions in the world today. 

The main concept of the method to guess a pressure field 
and calculate the velocities. Then estimate the continuity 
defect, and use this to calculate a correction of the pres-
sure field. To derive the equations for the pressure-correc-
tion, a special notation is used. The initially calculated 
variables do not satisfy continuity and are denoted with an 
index *. The correction of the variables is denoted with an 
index ‘. The variables after correction do not have a super-
script. The process can then be written:

(4.4.1)

(4.4.2)

P is the pressure and U is the velocity. The index k on the 
velocity denotes direction, and runs from 1 to 3 for a 3D 
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calculation.

Given guessed values for the pressure, the discretized 
version of the Navier-Stokes equations is: 

(4.4.3)

The convective and diffusive terms have been discretized 
as described in Chapter 3. The variable B contains the 
rest of the terms besides the convective term, the diffusive 
term and the pressure term. In the pressure term, A is the 
surface area on the cell wall, and ξ is an index for the non-
orthogonal coordinate system, described in Chapter 2.1.
 
The discretized version of the Navier-Stokes equations 
based on the corrected variables can be written as:

(4.4.4)

If this equation is subtracted from Equation 4.2.3, the fol-
lowing equation emerges 

:

(4.4.5)

Using Eq. 4.4.1 and Eq. 4.4.2, this equation can be rewrit-
ten:

(4.4.6)

In the SIMPLE method, the first term on the right side of 
the equation is omitted. The following formula for the 
velocity correction is then obtained:

(4.4.7)

The SIMPLEC method approximates the first term on the 
right hand side of Eq. 4.4.6 as:

(4.4.8)

This gives the following formula for the velocity correction:
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(4.4.9)

The SIMPLEC method uses the formula above. The 
above equations give the velocity-corrections once the 
pressure-corrections are known. To obtain the pressure-
corrections, the continuity equation is used for the velocity 
correction for a cell:

(k=1,2,3) (4.4.10)

or

(4.4.11)

The first term is the water continuity defect, V, given the 
guessed velocities. The second term is solved using Eq. 
4.4.8 for the velocity correction:

(4.4.12)

Given for example a quadrilateral cell with sides east, 
west, south and north, the left term in Eq. 4.4.12 is dis-
cretized as:

(4.4.13)

 The result is an equation of the following form:

(4.4.14)

The following formula is given for ao
e:

(4.4.15)

A similar equation holds for the other ao
nb coefficients. 
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The index e is then replaced by w, n, s, t or b. The ap,e fac-
tor is the average ap value in cell p and cell e. 

The source term, b, in Equation 4.4.14 is the water conti-
nuity defect for the guessed velocity field. Equation 4.4.14 
is solved in the same way as the other equations. The pro-
cedure is therefore:

   1. Guess a pressure field, P*
   2. Calculate the velocity U* by solving Equation 4.4.3 
   3. Solve equation 4.4.14 and obtain the pressure-

correction, P’
   4. Correct the pressure by adding P’ to P*
   5. Correct the velocities U* with U’ using Equation

4.4.7, and also correct the fluxes on the cell walls
   6. Iterate from point 2 to convergence

An equation for the pressure is not solved directly, only an 
equation for the pressure-correction. The pressure is 
obtained by accumulative addition of the pressure-correc-
tion values.

The SIMPLE method can give instabilities when calculat-
ing the pressure field. Therefore, the pressure-correction 
is often multiplied with a number below unity before being 
added to the pressure. The number is a relaxation coeffi-
cient. The value 0.2 is often used. The optimum factor 
depend on the flow situation and can be changed to give 
better convergence rates. Relaxation coefficients are fur-
ther described in Chapter 4.5. 

Regarding the difference between the SIMPLE and the 
SIMPLEC method, the SIMPLEC should be more consis-
tent in theory, as a more correct formula is used. Looking 
at Equations 4.4.7 and 4.4.9, the SIMPLE method will give 
a lower correction than the SIMPLEC method, as the 
denominator will be larger. The SIMPLE method will there-
fore move slower towards convergence than the SIM-
PLEC method. If there are problems with instabilities, this 
can be an advantage.

Experience in debugging CFD programs shows that the 
cause of the instabilities can some times be traced to the 
flux-corrections in the SIMPLE algorithm. Removing the 
flux-corrections has on occasion been done successfully 
(Olsen, 1999), although this lead to some sediment and 
water continuity defect. Since the flux-corrections decrease 
the continuity defects, it is important to check water and 
sediment continuity if the flux-corrections are removed.
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The SIMPLER method

The SIMPLER method is an extension of the SIMPLE 
method. The SIMPLE method usually gives good velocity 
corrections, but the correction of the pressure is less accu-
rate. This is due to the omission of the term . The 
SIMPLER method keeps the algorithms for computing the 
velocity-corrections, but uses another algorithm for com-
puting the pressure. Pseudo velocities Û are introduced:

(4.4.16)

 
The pseudo velocity is the same as the original velocity, ex-
cept that the pressure term has been omitted in the equa-
tion. The relation between Û and U is therefore:

(4.4.17)

This formula is similar to Eq. 4.4.7, except that U* has been 
replaced by Û. The solution is therefore also similar. There 
are only two differences: 

- The source term in the new discretized equation is not the 
continuity defect based on the regular velocities U. Equa-
tion 4.4.16 has to be solved, and water continuity based on 
Û has to be computed. 

- Solving eq. 4.4.17, the result is the pressure, and not the 
pressure-correction. 

The main algorithm for the SIMPLER method then be-
comes: 

   1. Guess the velocity field
   2. Compute the coefficients anb in the momentum

equation, and compute the starred velocities û.
   3. Compute the coefficients a0

nb in the pressure equa-
tion (4.4.17), and solve it to obtain the pressure. The
coefficients will be the same as given in Eq. 4.4.15.
The source term will be the water continuity defect
based on fluxes computed from Û. 

   4. Use the computed pressure field as P* in the SIM
PLE method. Calculate the velocity U* by solving
Equation 4.4.3 

   5. Solve equation 4.4.14 and obtain the pressure-
correction, P’

   6. Correct the velocities U* with U’ using Equation
4.4.7, and also correct the fluxes on the cell walls

   7. Iterate from point 2 to convergence
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A cell-centred scheme is
also called a non-stag-
gered variable location, or
a non-staggered grid. All 
variables are then comput
ed at the center of each 
cell. Previously, a stag-
gered variable allocation 
was used, where the pres
sure was computed be-
tween the cells.
The SIMPLER method was developed for a staggered grid. 
For a non-staggered grid, there are additional concerns 
when computing the water continuity defect based on Û, for 
example the use of the Rhie and Chow interpolation.

4.5 The Rhie and Chow interpolation

The Rhie and Chow interpolation is used to prevent oscil-
lations when using a cell-centred discretization scheme. Its 
derivation is given by Rhie and Chow (1983). The method 
introduces an additional term when calculating the fluxes 
on a cell surface. The term can be interpreted as fourth-or-
der artificial diffusion. However, the method is consistent, 
as there are no calibration coefficients involved.

The motivation for introducing the method originates from 
the discussion of using staggered or non-staggered varia-
ble location in a grid. The staggered grid removes some in-
stabilities experienced in non-staggered grids. The Rhie 
and Chow interpolation is used in connection with estimat-
ing the velocities on a grid cell boundary when fluxes are 
calculated. The method uses the pressure gradients from 
several grid cells to add an extra term to the fluxes. 

The method is derived by looking at the grid given below

The discretized Navier-Stokes Equations can be written as:

(4.5.1)

where K is the convective terms, S is the source terms and 
the last term is the pressure term. Calculating the equa-
tions in position e, between Cell P and Cell E in Fig. 4.5.1 
will be similar to a staggered grid. Then the pressure is cal-
culated in the center of the grid cell, and the velocities on 
the walls. Equation 4.5.1 can then be written:

 W             P      e        E            EE

Fig. 4.5.1 Grid for estimation on the fluxes on surface 
e, between cell P and E
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(4.5.2)

If a non-staggered grid is used, Eq. 4.5.1 becomes:

 (4.5.3)

(4.5.4)

for Cell P and Cell E respectively. The notation Ke is intro-
duced, to denote a linear interpolation of KP and KE to the 
surface e. If the grid cell sizes are equal, the following for-
mula defines the notation:

(4.5.5)

The derivation of the Rhie and Chow method now assumes 
Ke=Ke and Se=Se. Inserting this into Eq. 4.5.2 gives:

(4.5.6)

If a linear interpolation is used for all the variables in Eq. 
3.4.1 from the center of Cell P and Cell E to the surface e, 
the following equation emerges:

(4.5.7)

Subtracting Eq. 4.5.7 from Eq. 4.5.6 gives the following 
equation:

(4.5.8)

This formula could be used for the interpolation. The only 
problem is that apdepends on the relaxation factor α for the 
velocity equations, so the flow field would be slightly differ-
ent for different values of α. Multiplying the last term with α 
removes the problem. The final equation becomes: 
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(4.5.9)

To evaluate the pressure gradients in Eq. 4.5.9, the follow-
ing equations are used:

(4.5.10)

(4.5.11)

The indexes E, W, P and EE is defined in Fig. 4.5.1. The 
same derivation and formula can be derived for the other 
cell walls, only with changing indexes.

The Rhie and Chow interpolation formula has occasionally 
given rise to instabilities, when there were large source 
terms in the equations (Olsen and Kjellesvig, 1998b). But 
for almost all cases the method will give improved stability.

4.6 Wall laws

Early work on wall laws was carried out by Hermann 
Schlichting (1979), initially to study air flow around planes. 
The shape of the velocity profile close to the wall in a 
boundary layer was found to be universal, and Schlicting’s 
experiments lead to formulas describing the profile. In a 
CFD program, the formulas are used to describe the veloc-
ity profile between the wall and the center of the cell closest 
to the wall. If wall laws were not used, it would be neces-
sary to use a large number of additional grid cells to resolve 
the velocity gradients at the wall.

Early CFD models were only applied to situations with 
smooth walls, and only incorporated such wall laws. How-
ever, Schlichting also made wall laws for rough walls. The 
same formulas are used in hydraulic engineering to de-
scribe the vertical velocity profile in a wide channel/river 
with uniform flow:

(4.6.1)

U is the velocity, U* is the shear velocity, y is the distance 
from the wall and ks is the wall roughness, where Schlicht-
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ing used spheres glued to a flat plate. Later studies have 
related the roughness to the bed sediment grain size distri-
bution:

(4.6.2)

where d90 is the grain size fraction of the bed where 90 % 
of the material is smaller.

Schlichting’s experiments suggested the wall laws are valid 
in the range where y+ is between 30 and 3000, given as:

(4.6.3)

where ν is the kinematic viscosity of water. Schlichting’s 
experiments suggest that the formula can also be used for 
larger y+ values, as long as we can assume Eq. 4.6.1 holds 
between the wall and the center of the cell closest to the 
wall. For uniform flow in a wide channel, the equation is 
used all the way to the water surface, so this may be a valid 
assumption for many cases. On the other hand, if y+ is very 
small there may be other problems. The physical interpre-
tation is that the height of the roughness elements exceeds 
the vertical size of the bed cell. Algorithms with some sort 
of porosity can then be used (Olsen and Stokseth, 1995; 
Fischer-Antze et. al., 2001). A further description is given in 
Chapter 5.2.

Implementing the wall laws in the CFD code, the main idea 
is to include a sink term for the velocity equations. The 
shear stress at the wall will be a negative source in the ve-
locity equations. The shear stress is estimated using the 
wall laws. 

The forces on the bed cell is: 
(4.6.4)

where Aw is the wall area of the bed cell. The shear stress, 
τw, is found by using the wall laws:

(4.6.5)

(4.6.6)

It would have been possible to insert Eq. 4.6.3 into Eq. 
4.6.2, and used this in Eq. 4.6.1. The source term would 
then be a function of U raised to the power 2. This would 
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give a less stable discretization than using a formula where 
U is raised to a power 1. To achieve the latter, the assump-
tion of turbulent production = dissipation is used, giving the 
important equation:

(4.6.7)

which can be rewritten:

(4.6.8)

The forces on the bed cell can then be written using Eq. 
4.6.1, 4.6.2, 4.6.3 and 4.6.5:

(4.6.9)

and the source term for ap becomes

.
(4.6.10)

An additional general term is added to take into accounts 
effects of the velocity being not parallel to the wall. Its der-
ivation can be taken from the formula for the shear stress 
as a function of the velocity:

(4.6.11)

The details are given by Melaaen (1990). The result is 

.

(4.6.12)

where i is an index for the equation being solved, and n is 
the unit vector normal to the wall. Usually, the term is very 
small compared with the other terms. The term is zero if the 
flow is parallel to the wall. 
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4.7 The k-ε turbulence model

The k-ε model is one of the most widely used turbulence 
models in CFD. It is described in detail by Rodi (1980). One 
of the main strengths of the model is its universality, as it 
has been applied successfully to a large number of differ-
ent flow situations. Its empirical constants are relatively 
universal. Another characteristic is that it may overpredict 
the turbulent eddy-viscosity for some situations. This in-
creases the stability of the CFD model, but it may also lead 
to inaccurate results for some cases. An example is mod-
elling flow around a cylinder, where the increased eddy-vis-
cosity can prevent emergence of vortex shedding. 

The k-ε model models the eddy-viscosity as:

(4.7.1)

k is turbulent kinetic energy, defined by:

(4.7.2)

k is modelled as:

(4.7.3)

where Pk is given by:

(4.7.4)

The dissipation of k is denoted ε, and modelled as:

(4.7.5)
The constants in the k-ε model have the following standard 
values:

cµ = 0.09
Cε1 = 1.44
Cε2 = 1.92 (4.7.6)
σk = 1.0
σε = 1.3

The numerical implementation of the k-ε model involves 
solving the two partial differential equations for k and ε 
(4.7.3) and (4.7.5). The terms on the left side of the equa-
tions and the first term on the right side form a convection-
diffusion equation, which can be solved using standard al-
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gorithms (Olsen, 1999). Afterwards, Eq. 4.7.1 is solved to 
obtain the eddy-viscosity. 

The main work from a numerical point of view is the calcu-
lation of Pk and taking care of the boundary conditions. 

Estimating Pk

Pk is calculated by integrating Eq. 3.4.5 over a control vol-
ume. The discretized version for a non-orthogonal 3D grid 
is then (Melaaen, 1990):

(4.7.7)

The equation can be rewritten using Eq. 4.2.2:

(4.7.8)

or

(4.7.9)

Each ω has three terms, so 27 terms are obtained altogeth-
er. If the lines in the η direction are identical to the z direc-
tion, A1

3 and A2
3 will be zero, so some terms will disappear.

The velocity gradients can be obtained by central differenc-
ing. This means for example:’

(4.7.10)

where n denotes the cell north of the current cell, and s de-
notes the south cell.

Integration of the term over the cell means that the source 
term in the k equation is given by Pk multiplied with the vol-
ume of the cell. 
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Boundary conditions

Zero gradients are used as boundary conditions close to 
the water surface and at outlets. Alternatively, Rodi (1980) 
gives a method to account for damping of k from the water 
surface. 

Boundary conditions are also needed for k and ε at the wall. 
Formulas are given by Rodi (1980), based on the assump-
tion that turbulent production is equal to the dissipation of k 
near the wall. A formula for ε is then

: (4.7.11)

The formula gives the dissipation in the bed cell directly. It 
is therefore specified in the cell, and it would not be neces-
sary to solve the convection-diffusion equation for e for 
these cells. However, the solvers usually need a standard 
method will all grid cells. To make the solver give the result 
of Eq. 3.4.12, the result is multiplied with 1030 and added to 
the source, simultaneously as 1030 is added to ap. The 
solver will thereby come up with the result of Equation 
3.4.12 in the bed cell. 

The source terms for k is obtained by integrating the source 
of the k-equation (Eq. 4.7.3) over the bed cell:

(4.7.12)

The wall law is then used to find τw and U+
w:

(4.7.13)

(4.7.14)

The velocity in the bed cell, Uw, is taken from the result of 
the last iteration.

The terms in Eq. 4.7.13 are added to the source. The addi-
tion to ap coefficient becomes:

(4.7.15)

After having used Eqs. 4.7.14 and 4.7.15.
The addition to the source becomes:
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νT

0.3h

Figure 4.7.1 Vertical 
profile of the eddy-vis-
cosity according to 
Naas (1977)
(4.7.16)

Eqs. 4.7.14 and 4.7.15 has also been used.

Inflow boundary

On inflow boundaries, the values of k and ε have to be 
specified. A procedure outlined by Olsen (1991) can be 
used for free surface flows. It is based on the investigations 
of the magnitude (Keefer, 1971) and vertical profile (Naas, 
1977) of the eddy-viscosity in rivers. The average eddy-vis-
cosity is given by:

(4.7.17)

where u* is the shear velocity and h is the water depth. Note 
this equation is based on natural rivers. For straight wide 
channels with uniform flow, a different coefficient from 0.11 
is obtained.

The profile of the eddy-viscosity is given in Fig. 4.7.1. The 
value of k at the bed can be estimated from the shear 
stress: 

(4.7.18)

The value of ε at the boundary is given by Eq. 4.7.11. 
Thereby the bed value of the eddy-viscosity in Fig. 4.7.1 
can be computed, using Eq. 4.7.1. Assuming for example 
a linear vertical profile of k, with a surface value equal to 
half the bed value, Eq. 4.7.1 can be used to compute the 
vertical profile of ε. 

4.8 The stress terms

The Boussinesq approximation for the turbulent stress 
term is given as: 

           (4.8.1)

The first term on the right side is the ordinary diffusive term, 
used for solving the convection-diffusion equation. The 
second term is here denoted the stress term. It is often ne-
glected in CFD programs tailor-made for hydraulic engi-
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neering, such as SSIIM and Telemac. The reasons are 
given in the following. 

In hydraulic engineering flow fields, there is usually one 
dominant flow direction. Let us assume such a situation, 
with the x-direction being in the flow direction in an orthog-
onal grid. The z direction is vertical and y is in the cross-
streamwise direction. The stress term for the velocity U in 
the x direction can then be written:

(4.8.2)

The two last terms will have negliable influence on U, be-
cause U is much larger than V and W. The first term is the 
diffusion in the streamwise direction. This term is similar to 
the diffusive term calculated when solving the convection-
diffusion equation. Looking at an analytical solution, the dif-
fusion in this direction will go to zero for large Pechlet num-
bers (velocity/diffusion). 

The velocities in the y and z directions will be much smaller 
than in the x direction, and will therefore have less influ-
ence on the total flow field.

The main diffusive term for this flow field will be: 

(4.8.3)

for the velocity in the x-direction. The vertical gradient of 
the main horizontal velocity will dominate the boundary lay-
er. This term is an ordinary diffusive term included in the 
convection-diffusion equation. 

The effect of the stress terms has been estimated by sev-
eral researchers. Suriyaarchchi (2000) found negliable dif-
ferences computing flow around a groyne. Olsen and Aryal 
(2001) also found negliable influences on the velocity field 
in a sand trap. Booker (2000) found an average change of 
3 % in the velocity close to the bed for flow in a natural river. 

Discretization

The discretization of the stress terms can be derived by 
tensor notation. Using the tensor formulas derived in Chap-
ter 3,1, the term is written:

1
ρ
--- ∂

∂j
---- νT

∂Uj
∂x

--------- 1
ρ
--- ∂

∂x
----- νT

∂U
∂x
------- 1

ρ
--- ∂

∂x
----- νT

∂V
∂x
------ 1

ρ
--- ∂

∂x
----- νT

∂W
∂x
--------+ +=

1
ρ
--- ∂

∂z
----- νT

∂U
∂z
-------
44



CFD Algorithms for Hydraulic Engineering 4. The Navier-Stokes equations
(4.8.4)

where

(4.8.5)

The values of the areas A in the formula above are compo-
nents in direction i. 

The stress term is integrated over the volume of the cell, 
and the Gauss theorem applied. The term is evaluated at 
the surfaces between the cells, corresponding well with the 
physical concept of stresses on a finite element. As an ex-
ample, we look at the surface between cell i and i+1 in a 
three-dimensional structured grid. This is at the east side of 
cell i. After integration, the source term for Equation i, for 
the east wall can be written:

(4.8.6)

The values of V and νT are interpolated linearly from the 
values in the center of the two cells. The areas A are also 
taken directly from the physical areas of the wall, or inter-
polated linearly from the two cells.

The three velocity gradients are given in the directions ξ,ψ 
and ζ. The gradient in the ξ direction (east-west) can be 
evaluated as:

(4.8.7)

This gradient is in the direction normal to the surface. The 
two other directions are along the surface, in the ψ (north-
south) and ζ (top-bottom) direction. The gradients in these 
directions are obtained by first interpolating the velocities to 
the sides of the surface, according to Fig. 4.8.1 below:
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(i,j-1,k)
(i,j,k)

  S

(i,j,k+

(i,j,k-
The gradients in the ψ and ζ directions becomes:

(4.8.8)

(4.8.9)

The values in position S, N, B and T can be evaluated by 
interpolation from the surrounding cells. A linear interpola-
tion can be used, where the distances from the position to 
the center of the cells are used. A simplification is to as-
sume equal interpolation coefficient for all four cells sur-
rounding each position. For example, for position N, this 
gives the following formula:

(4.8.10)

The formula gives the stresses for one equation, on one 
cell side. Each cell has six surfaces, so there will be six 
source terms line Eq. 4.8.6 for each cell. The source term 
for one cell will be the same as the sink term for the cell on 
the other side of the surface. Therefore, three evaluations 
need to be made for each cell. Note the ω term depend on 
the velocity direction, and will change for each equation. 

4.9 Non-orthogonal terms

The non-orthogonal terms are caused by turbulent diffu-
sion in a non-orthogonal grid. The terms originate from the 
diffusive terms of all convection-diffusion equations, both 
for calculating water flow and sediment concentration. A 
physical interpretation of the terms is given in the example 
below. Looking at a non-orthogonal grid with a concentra-
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Figure 4.8.1 Interpolation of gra-
dients in the ψ and ζ directions 
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Figure 4.9.1 Grid for non
orthogonal term deriva-
tion

y

x

tion gradient in Fig. 4.9.1, the physical explanation of the 
non-orthogonal terms are the fluxes through cell surface e. 

To simplify the problem, it is assumed that the velocities 
are zero, so the convective term is not included. There is a 
fixed amount of turbulent diffusion, Γ. The concentration 
gradient in the x direction is zero, and the concentration 
gradient in the y direction is constant equal to δc. The or-
thogonal flux through Surface e is then zero, as the con-
centration gradient between Cell P and Cell E is zero. The 
flux through Surface e is caused by the non-orthogonal grid 
compared with the main concentration gradient direction. 
The flux can be calculated by a non-orthogonal term.

In the Figure above, the non-orthogonal contribution is:

(4.9.1)

                                     1           2         3

Equation 4.9.1 is relatively simple, since the problem in Fig. 
4.9.1 is relatively uncomplicated. For a general 3D case, 
the non-orthogonal terms are more involved. 

The numbers below Eq. 4.9.1 denotes the three terms in 
brackets: 

1. The turbulent diffusion coefficient 
2. The geometry term, 
3. The concentration difference. 

The turbulent diffusion coefficient is interpolated linearly 
from the surrounding cells, and so is the concentration in 
the cell corners. This is a relatively straightforward proce-
dure, also in a general 3D geometry. The main difficulty is 
the estimation of the geometry term. The term is also called 
a geometric diffusion coefficient, and has the general 
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a

b

c

S

Figure 4.9.1 Non-orthogo
expression of a surface area divided by a distance in 3D. 
Its units are in meters (m2/m). The general 3D expression 
for the geometric diffusion coefficient can be derived using 
the algebraic expressions in Chapter 4.2 and tensor calcu-
lus (Melaaen, 1990). Alternatively, it can be derived by us-
ing physical reasoning and vectors. The latter option is 
used in the following, as shown in the figure below. 

Fig. 4.9.1 shows Cell P and Cell E, and the surface d-e be-
tween the cells. The corners of Cell P are a, d, e, c and of 
Cell E are d, f, h, e. The point b is midway between a and 
c, and the point g is midway between point h and f. The 
non-orthogonal flux over surface d-e is to be computed. 
The flux will take place in the volume marked V, surround-
ing line d-e. The main difficulty from a physical perspective 
is to find the thickness of this volume, normal to the d-
e direction. This is done by using the dot product of the 
vector d-e and b-g. 

The vector b-g is denoted vξ, the vector d-e is denoted vψ 

and the vector in the third direction is denoted vζ. The start-
ing and ending points of vζ are midway between point d and 
e. The cross-sectional area of the non-orthogonal surface 
will then be:

(4.9.2)

The dot product of vector vψ and the unit vector in direction 
vξ gives a vector the direction normal to d-e, with the length 
equal to the thickness of the non-orthogonal volume. This 
is cross-multiplied with the vector in the third direction to 
get the non-orthogonal surface area.
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Note: the dot product in 
Eq. 4.9.3 will be zero if 
the grid is orthogonal, 
making the term vanish.
The geometric diffusion coefficient can be estimated by di-
viding A with the distance between d and e:

(4.9.3)

The last step is an approximation, as the distance will be 
slightly smaller, depending on the non-orthogonality of the 
grid. Also, the calculation of the length of the vectors takes 
relatively long computational time. Therefore, the denomi-
nator can be replaced by the cross-product of the vectors. 
The following equation then emerges, corresponding to the 
exact equation derived by tensor calculus (Melaaen, 1990):

(4.9.3)

Equation 4.9.1 gives the flux in a two-dimensional case. 
For a 3D case, there are two non-orthogonal fluxes for 
each surface, in the two directions following the surface. 
The terms will then give the flux through one surface. Each 
cell has six surfaces, so there are twelve fluxes to calculate 
for each cell. This can be simplified by realizing the non-or-
thogonal flux into one cell is the same as the flux flowing 
out of the neighbouring cell, reducing the number of flux 
computations pr. cell to six.

The non-orthogonal term will usually be smaller than the 
orthogonal term, also for strongly non-orthogonal grids. 
The non-orthogonal term further includes the turbulent dif-
fusion, Γ. As said previously, Γ is difficult to estimate exact-
ly. The k-ε turbulence model estimates a uniform Γ in all 
three spatial directions, even though experiments show it 
can vary with an order of magnitude between the smallest 
and largest directional value. The results of the CFD model 
still becomes reasonably correct, and this is because the 
computation is not extremely sensitive to the diffusive 
terms. Some researchers have even introduced artificial 
diffusion, where the effective diffusion is increased by or-
ders of magnitude to get a stable solution. And still the re-
sults are reasonable. Therefore the non-orthogonal terms 
will usually have very little effect on the solution, and they 
are neglected in some CFD models.
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4.10 Solvers

The discretized Navier-Stokes equations, or the convec-
tion-diffusion equation for sediment concentration, gives a 
formula for the unknown, φ, in a cell, p, as a function of the 
surrounding cells:

(4.10.1)

Solving the convection-diffusion equation for sediment 
concentration, the velocities are known, so the anb coeffi-
cients can be calculated before the solution of the equa-
tions. In the Navier-Stokes equations, the anb coefficients 
are functions of a variable velocity. The coefficients have to 
be updated during the solution procedure.

There exist a large number of solvers for the equations. A 
classification is whether the solver is direct or iterative. A 
direct solver will establish a matrix for the system of equa-
tions, and invert it to obtain the solution. This is extremely 
time-consuming from a computational point of view, and re-
quires very large computer memory. Also, if the Navier-
Stokes equations are solved, the SIMPLE method is used 
and the turbulence model will have to give the values of the 
turbulent eddy-viscosity. It is not possible to solve all these 
six unknown simultaneously, so some type of iteration has 
to be used. 

Solving Eq. 4.10.1 to a large degree of accuracy would take 
very long time. Since the coefficients anb are obtained from 
the velocity field from a previous iterations, they are not ex-
actly correct anyway. An iterative solver is therefore used 
in most CFD finite volume programs, where only some iter-
ations are done to improve an already guessed solution. 
Then the anb coefficients are updated, the SIMPLE method 
applied for the pressure and a turbulence model used to 
calculate the eddy-viscosity, before more iterations are 
done. 

If there are few cells, this approach will solve the equations 
relatively rapidly. However, for many cells, the changes in 
variables will progress slowly across the domain. Some 
particular solution methods are then useful:
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The TDMA method

TDMA is an abbreviation for the Tri-Diagonal Matrix Algo-
rithm, also called the Thomas Algorithm. It is a one-dimen-
sional solution procedure, solving the system of equations 
directly. When used in three dimensions, it can not solve 
the equations directly, but it can be used in an iterative pro-
cedure. For a structured grid, each row of cells in one direc-
tion can be thought of as a one-dimensional system. The 
solution is done for all the rows, and repeated for all three 
directions. 

Derivation of the TDMA method is based on a one-dimen-
sional array of unknowns. Let us for example assume we 
solve for the east-west direction. Eq. 4.10.1 can then be 
written:

(4.10.2)

where 

   A = ap
   B = ae (4.10.3)
   C = aw
   D = Source + anφn + asφs + atφt + abφb 

The TDMA method computes the correct values in the 
whole array by using two one-dimensional auxiliary arrays, 
P and Q defined from:

    φi = Piφi+1 + Qi (4.10.4)

or 

    φi-1 = Pi-1φi + Qi-1 (4.10.5)

Inserting Eq. 4.10.5 into Eq. 4.10.2 gives:

(4.10.6)

This removes the dependence of φi on φi-1. Solving this 
equation with respect to φi gives:

(4.10.7)

Comparing Eq. 4.10.7 with Eq. 4.10.4, they are the same if 
P and Q are computed as:

(4.10.8)

Aiφi Biφi 1+ Ciφi 1– Di+ +=

Aiφi Biφi 1+ Ci Pi 1– φi Qi 1–+( ) Di+ +=
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Ai Ci– Pi 1–
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Figure 4.10.1. Grids for the
block-correction. Original 
grid (left), coarse grid, di-
rection 1 (middle) and 
coarse grid, direction 2 
(right).
(4.10.9)

The TDMA method uses two sweeps. The computation 
starts the first sweep at i=1, and computes the values of P 
and Q for the whole array until i=n, where n is the length of 
the array. Then it starts the second sweep at i=n, and com-
putes φ for all the arrays by using Eq. 4.10.4.

Multi-grid solvers

The solution time, T, for a given solver can be given by the 
following equation: 

(4.10.2)

where n is the number of grid cells and a, b and c are coef-
ficients specific for each solver. For large grids, the most 
important coefficient is usually b. It can be shown that the 
theoretical minimum b value is 1.0. Of all the different solv-
ers, some multi-grid methods have the lowest values of b, 
close to unity.

One of the main problems of fine grids is to get information 
about the unknown variables to move through the grid. As-
suming a Gauss-Seidel solver, the information may only 
move one grid cell for each sweep. Convergence will then 
be very much dependent on the number of grid cells. The 
multi-grid solver addresses this problem by using several 
grids for the same domain, with different number of grid 
cells. The coarsest grid will move information through the 
grid very fast, while the finer grid will resolve steep gradi-
ents. Information about the variables are transferred be-
tween the different grids. There may be several grids with 
varying fineness, between the coarsest and finest grid.

One type of multi-grid algorithms is called block-correc-
tion. It is mostly used for structured grids. For a two-dimen-
sional situation, the grids then look like this:
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The iterations are started on the original grid. Then all var-
iables are summed in a slice of the grid, so that a one-di-
mensional grid emerges. This is solved, and the result is 
used to correct the original values. This is repeated in all di-
rections, shown here with two coarse grids, for a two-di-
mensional situation. For a 3D situation, there would be 
three coarse grids. 

The TDMA method is very applicable for solving the 1D 
equations on the coarse grids.
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5. Special algorithms for use in hydrau-
lics

Most general-purpose CFD models are made for use in 
Mechanical Engineering, for example modelling air flow 
around a vehicle or and aeroplane, or a process inside an 
engine. Algorithms for special Hydraulic Engineering prob-
lems are often not included. The bed roughness of a river 
is a typical example, together with sediment transport.

5.1 A limiter scheme for the wall laws

The previously described wall law for rough boundaries 
(Eq. 4.6.1) was developed for relatively small roughness 
compared with the water depth. If the roughness height is 
larger then 15 times the height of the bed cell, a negative 
velocity will be predicted. When the CFD model calculates 
the water depth and the roughness, such a situation can 
easily occur, leading to stability problems. To maintain sta-
bility, a limiter of the roughness/cell depth ratio is often im-
posed. This can be thought to be similar to a flux limiter in 
a convective discretization scheme. The following formula 
for the law of the wall can be used:

(5.1.1)

Although the limiter algorithm will prevent program crash-
es, the result may not be correct. The sink term may be too 
small, overpredicting the velocities for high roughness. A 
more correct approach is to add extra negative source 
terms for high roughness/cell height ratios. This can be 
based on porosity or flow in vegetated areas, as further de-
scribed in Chapter 5.2.    

5.2 Modelling large roughness elements

The main two types of large roughness elements found in 
river engineering are rocks and vegetation. Rocks have 
been modelled by Olsen and Stokseth (1995) by using a 
porosity approach. A formula for groundwater flow by 
Engelund (1953) was used:

(5.2.1)

Here, I is the hydraulic gradient, β0 is a constant, n is the 
porosity, g is the acceleration of gravity and d is the char-
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acteristic particle diameter. A β0 value of 3.0 was suggest-
ed by Engelund, and used by Olsen and Stokseth. 
Additionally, an algorithm to estimate the porosity as a 
function of the bed topography was suggested by Olsen 
and Stokseth (1995):

(5.2.2)

The formula is based on a number of randomly measured 
points (x,y,z) in a river. In the 2D depth-averaged cell there 
are mt points. The porosity, nk, at level k is given by Eq. 
5.2.2, where mk is the number of points in a cell above level 
k. The empirical parameter ck was varied and a value of 0.3 
was found to produce reasonable results for one particular 
river. Olsen and Stokseth used wall laws in the cells above 
the porous cells where Eq. 5.2.1 was used, also for the tur-
bulence variables. 

Later, Fischer-Antze et. al. (2000) used a formula for drag 
on a cylinder to simulate vegetation in a river. A laboratory 
experiment was modelled, where vertical circular rods 
were used to simulate the vegetation. The drag formula 
was used:

(5.2.3)

F is the drag force on an object, CD is the drag coefficient, 
ρ is the water density, U is the velocity and A is the surface 
area of the object, projected normal to the flow direction. 
The discretized version is obtained by integration over a 
control volume, and linearizing the source into the ap term:

(5.2.4)

where n is the number of stems in a cell, d is the stem di-
ameter and δz is the height of the cell. Fisher-Antze et. al. 
(2001) obtained very good results although no special 
modifications of the turbulence model was used.

5.3 Including gravity for spillway and steep 
floodwave modelling

In general, the location of the water levels can be estimated 
using a known water surface elevation and the pressure 
close to the water surface computed by the CFD model. 
The known water level is usually at the downstream outlet 
for subcritical flow. For supercritical flow, it is possible to 
specify the upstream water level.
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Figure 5.3.1 Longitudinal
efficient of discharge for a

 0
However, in some cases both the upstream and down-
stream water levels are unknown. An example is flow over 
a spillway, where the water level is determined by the criti-
cal flow over the spillway crest. In a general spillway geom-
etry, it is not known where the critical section is. The CFD 
model therefore have to calculate the water surface loca-
tion without giving any user input for known water levels. A 
physical model study of the same case presents a similar 
problem.

The method to solve the problem in the CFD model is to in-
clude the gravity in the calculation:

(5.3.1)

V is the volume of the cell, g is the acceleration of gravity 
and ρw is the water density.

The gravity term is usually very large compared with the 
other terms, causing instabilities. A transient term has to be 
added to get a stable solution, with a very small time step. 
The computation is started with a horizontal water surface. 
It is recommended to start well above the assumed final lo-
cation of the water levels. The gravity term in the CFD mod-
el then pulls the water surface down. This is visualized in 
the figure below:

Sourcevertical Vgρw=

 profile of the water level and velocities for computation of co-
 spillway. The numbers show the computed time.

.5 sec.

    5 ms

  93 sec.

  50 ms
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The gravity term could in principle be introduced in all hy-
draulic models, but since it causes instabilities, it is not in-
cluded when it is not necessary. Other than spillway cases, 
the term has also been used to simulate flood waves hitting 
an object (Lovoll et. al, 1995). The water surface is then 
very complex, and both upstream and downstream water 
levels are unknown. 

5.4 Density currents and gravity

A possible direct approach to modelling density currents is 
to include gravity into the calculations, and let the density 
vary according to the resulting concentration field. This 
would work in principal, but as mentioned in the previous 
chapter, large source terms will cause instabilities. 

A more stable approach is to include only the gravity on the 
effect of the density increase, compared with the water 
density. A gravity current will usually move close to the bed, 
giving large source terms only on cells in this region. Most 
of the cells may therefore not be affected by large source 
terms. Also, the density increase is usually one or two or-
ders of magnitude smaller than the water density. The 
magnitude of the source terms therefore decreases corre-
spondingly.

This approach was used by Olsen and Tesaker (1995) to 
model a turbidity current in a flume.

The additional source term in the vertical direction in the 
Navier-Stokes equations becomes:

(5.4.1)

V is the volume of the cell, g is the acceleration of gravity, 
ρs and ρw is the sediment and water density and c is the 
sediment concentration.

The effect of the density variations on the turbulence taken 
into account by introducing a modified eddy viscosity. The 
eddy viscosity from the k-ε model is multiplied with a factor 
taking into account the velocity and concentration gradi-
ents (Rodi, 1980):

(5.4.2)
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The eddy viscosity is denoted νT, β is a constant equal to 
10, ρ is the density of the water/sediment mixture, U is the 
velocity, z is the geometrical distance in the vertical direc-
tion and α is a constant equal to -0.5. The values of α and 
β are given by Rodi (1980). Olsen and Lysne (2000) found 
values of α equal to -1.3 together with β equal to 10 give 
better results when computing currents in an ice-covered 
lake.

5.5 Modelling horizontal density gradients for 
stratified lakes

A number of studies have been carried out modelling strat-
ified lakes in three dimensions. Early work was carried out 
by Simons (1976). A quasi-3D approach was used, where 
the pressure field was computed from a depth-averaged 
2D grid, and hydrostatic pressure was assumed in the ver-
tical direction. 

The approach described here is fully 3D with non-hydro-
static pressure computation. Modelling stratified flows us-
ing gravity in the vertical direction would lead to large 
source terms and instabilities. Adding additional forces 
from density deviation from standard water density would 
affect most of the cells in the geometry, as the density var-
iation is often over the whole depth of a lake. Instabilities 
would thereby occur.

A solution is to use the same approach as the quasi-3D 
models, where horizontal density gradients are computed 
and included into the Navier-Stokes equations only in the 
horizontal directions. A sketch of the physics of the gradi-
ents is given in Fig. 5.5.1. 
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The δρ notation indicates the density of the water, when the 
standard water density, ρstd, is subtracted:

(5.5.1)

The pressure distribution, δP, in the vertical direction due 
to the density variation is then computed for cell m:

(5.5.2)

where δz is the vertical height of a grid cell and n is the 
number of grid cells in the vertical direction.

The horizontal pressure gradient source term, Sm, for cell 
m is then:

(5.5.3)

where the index l and r denotes left and right cell, respec-
tively, according to Fig. 5.5.1.

The source term above applies locally to one grid cell. Ad-
ditionally, there will be a horizontal gradient due to the sum 
of all the density differences over the whole vertical colou-
mn. This force will affect all the cells in the vertical column. 
The source term can be computed as:
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Figure 5.5.1 Vertical density and pressure gradients
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(5.5.4)

The equations above work well as long as the cell sizes 
have similar vertical distribution. In other words, if the hori-
zontal grid lines are completely horizontal. If a bed-bound-
ary fitted grid is used, instabilities and inaccurate results 
will occur. 
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6. Sediment transport modelling

The science of sediment transport is complex, and there 
are many uncertainties and conflicting views from various 
schools of researchers. There exist a very large amount of 
literature on the subject. It would be very difficult to incor-
porate all sediment research into a CFD computer pro-
gram. In the following, some more well-accepted methods 
have been selected. 

6.1 Convection-diffusion equations for sus-
pended sediment

The convection-diffusion equation for suspended sediment 
concentration is solved using the methods described in 
Chapter 3. The only change in the equation is the added 
term for the fall velocity of the sediment particles. It is the 
third term on the left side of the equation below:

(6.1.1)

The sediment concentration is denoted c, w is the fall ve-
locity of the particles, U is the water velocity, x is a space 
dimension and Γ is the turbulent diffusivity. The three direc-
tions are x1, x2 and x3, and the velocities in the three direc-
tions are U1, U2 and U3. 

The most convenient way of discretizing the fall velocity 
term is to add the fall velocity to the water velocity in the 
vertical direction. The convective terms can then be writ-
ten:

(6.1.2)

Alternatively, the term can be added to the source in the 
vertical direction:

(6.1.3)

The top area of the cell is denoted A3, and the concentra-
tion in the cell above the current cell is denoted cu. A first-
order upstream approximation has been used.
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6.2 Bed boundary condition for suspended 
load

The theory behind the bed boundary condition for the sed-
iment concentration was initially developed by Einstein 
(1950). Einstein assumed the sediment concentration 
close to the bed was a function of the forces on particles at 
the bed and the relative weight of the particle. As it was dif-
ficult to use such a formula directly at that time, an integra-
tion over the depth was done, resulting in a sediment 
transport formula where a logarithmic velocity profile was 
assumed. Most sediment transport formulas assume a 
nearly uniform flow, and includes the water depth as a pa-
rameter. In a 3D case with recirculation zones, the as-
sumption of a logarithmic velocity profile is not valid. Most 
of the existing formulas for sediment transport in rivers can 
therefore not be used directly. 

A formula for sediment concentration close to the bed have 
to include only local bed parameters: sediment character-
istics, bed shear stress and turbulence. Van Rijn (1987) 
carried out early research on such formulas, where he 
used dimensionless numbers of shear stress and particle 
diameter to correlate empirical coefficients against obser-
vations from the field and flume experiments. According to 
van Rijn (1987), the boundary condition at the bed for the 
convection-diffusion equation can be specified in one of 
two ways:

- Adding a source term for the bed cells, where the sedi-
ment pick-up rate is estimated
- Specifying an equilibrium sediment concentration close to 
the bed

The second approach is most used today, and van Rijn’s 
formula is given as:

(6.2.1)

The sediment particle diameter is denoted d, a is a refer-
ence level set equal to the roughness height, τ is the bed 
shear stress, τc is the critical bed shear stress for move-
ment of sediment particles, ρw and ρs are the density of wa-
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ter and sediment, ν is the viscosity of the water and g is the 
acceleration of gravity. 

The sediment concentration in the bed cell is computed us-
ing Eq. 6.2.1. A special solved that do not compute the con-
centration for the bed cells can be used. Alternatively, the 
concentration can be multiplied with a large number, and 
added to the source and ap:

Because of the large number, the other terms become neg-
liable, and the effective concentration becomes: 

source/ap = cb.

6.3 Modelling bed load with suspended load

Traditionally, sediment transport has been divided into bed 
load and suspended load. This concept was derived by 
Bagnold (1973) from observations of wind-blown sand in 
the desert. A definition of difference between the bed load 
and suspended load is generally not agreed upon, and the 
whole concept has caused much debate in the scientific 
community. Einstein (1950) defined bed load as particles 
moving in a region two particle diameters from the bed. 
This meant the particles were mostly rolling on the bed, in-
stead of moving up into the main current to become sus-
pended. Van Rijn (1987) admitted there were no clear 
distinction between bed load and suspended load, but he 
used Bagnolds approach. 

Van Rijn’s formula for bed load is:

(6.3.1)
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6.4 Bedform modelling

The classical literature on sediment transport also contain 
a number of formulas for bed forms. However, the same 
problem as with the formulas for sediment transport exist, 
as the formula often includes the water depth. Van Rijn 
(1987) also looked into this problem, and suggested formu-
las for the bed form height, ∆, independent of the water 
depth: 

(6.4.1)

where d is the water depth. The effective roughness was 
then computed as (van Rijn, 1987):

(6.4.2)

where λ is the bedform length, calculated as 7.3d.

Note that van Rjin’s equations for bed form roughness was 
developed on mostly uniform sediments. For non-uniform 
sediments, smaller bed forms was observed in the FCF Se-
ries C experiment at HR Wallingford (Bryant, 1999). 

6.5 Shear stress and particle movement

The shear stress on the bed is one of the most important 
parameters when modelling sediment transport. Two ques-
tions need to be answered: 

- How is the shear stress on the bed calculated?
- How to calculate the critical shear stress for movement of 
sediment particles?

Calculation of the bed shear stress

The shear stress on the bed can be calculated by the wall 
laws. Given the velocity in the bed cell, the height of the 
bed cell and the roughness, the only unknown is the shear 
velocity. The shear stress is calculated as 

(6.5.1)
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If the k-ε turbulence model is used, it is often assumed that 
production and dissipation of turbulence is in equilibrium 
close to the wall. Then the shear stress can be computed 
directly from the value of k near the bed:

(6.5.2)

Calculation of the critical shear stress

The critical shear stress, τc, for a bed sediment particle to 
move is calculated from Shield’s diagram. The diagram re-
lates the dimensionless shear stress and the dimension-
less particle diameter. The curve can be parameterized 
using the following formulas:

For R* > 500: 

(6.5.3)

For R* < 500:

(6.5.4)

where 

(6.5.5)

and

(6.5.6)

If the bed slopes upwards or sideways compared to the ve-
locity vector, the critical shear stress for the particle will 
change. The decrease factor, K, as a function of the sloping 
bed was given by Brooks (1963): 
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(6.5.7)

The angle between the flow direction and a line normal to 
bed plane is denoted α. The slope angle is denoted φ and 
θ is a slope parameter. The factor K is multiplied with the 
critical shear stress for a horizontal surface to give the ef-
fective critical shear stress for a sediment particle.

The bed form roughness is only to be applied to the water 
flow field. When calculating the shear stress at the bed for 
the sediment transport, only the grain roughness is to be 
used. The shear stress therefore has to be reduced by the 
factor F:

(6.5.8)

where ks is the roughness due to the sediments, and k∆ is 
the roughness due to the bed forms. 

6.6 Bed movements

The vertical changes, δz0, in the bed geometry can be cal-
culated from the continuity equation for sediment deposi-
tion/erosion in a cell close to the bed:

(6.6.1)

A is the bed cell area component in the horizontal plane. 
The conversion factor between the sediment flux and the 
sediment in the bed is denoted r. If the sediment concen-
tration is calculated as a volume fraction, r is typically 
around 2. 

The Inflow of sediments is calculated according to the fol-
lowing formula, derived from the continuity equation:

(6.6.2)

The outflow is computed according to the following formu-
la:

(6.6.3)

The parameter Π here denotes the neighbouring cells, 
where the anb are taken only from those surfaces bordering 
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   2                   

   3                   

   9                   

A         

C         
the cell we are looking at. For example, looking at cell i, and 
the water is flowing from cell i to cell i+1, aw for cell i will be 
included.

The average bed movement in each cell must be trans-
ferred to the corners of the cell, where the vertical levels of 
the bed are defined. Fig. 6.6.1 shows the grid.
:

Raising point A a vertical distance δzA, makes the following 
volume, based on the formula for a pyramid:

(6.6.4)

The volume made up of the movements in the four corners 
is equal to the volume made up of the estimated movement 
of the bed cell:

(6.6.5)

Further, it is assumed that the movement of all the corners 
are the same. This gives:

(6.6.6)

(6.6.7)

Two particular problems have to be dealt with: limits of 
movable beds, and sloping bed in relation to the main water 

  1                        6

  4                        5

  8                        7

               B

               D

Figure 6.6.1 Definition of 
cell (numbers) and corner 
(letters) indexes for calcu-
lation of bed movements
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flow direction. The latter question is discussed in Chapter 
6.11.

Limits of movable bed

The problem will typically occur when modelling scour in al-
luvial material, when there is bedrock below the sediments. 
The numerical algorithms have been developed when 
modelling flushing of sediments from reservoirs. The re-
sults were compared with a laboratory model where the 
bed was made of concrete.

If erosion takes place, and there is a limit to the moveable 
bed, it may not be possible to move one or more corners as 
much as what is given by Eq. 6.6.4. Then the system of 
equations must be solved with this limitation. It is possible 
to use Eq. 6.6.1 and 6.6.2, compute the volumes for each 
corner movement, and thereby solve the problem.

Another implication of limits to movable bed is a limit to the 
sediment concentration close to the bed. If this exceeds a 
given value, the algorithm may want to erode more sedi-
ment than what is in the bed. This available sediments in 
the bed must be computed, and a corresponding maximum 
sediment concentration close to the bed must be found. 
The concentration close to the bed must not be allowed to 
exceed this value, and this must be taken care of by the so-
lution procedure.

6.7 Sand slide algorithms

During bed changes, the bed slopes may increase to a lev-
el above the angle of repose, φ. The sediment will then 
slide downwards, so that the bed slope is reduced. This 
process is often seen in physical models, for example of lo-
cal scour. The sand slide process have to be taken into ac-
count by the numerical model. One algorithm is described 
by the following. 

All grid lines are checked for steep slopes. If one line has a 
slope above the angle of repose, it is moved vertically a dis-
tance δz. Fig. 6.8.1 below shows the grid from above. 
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Figure 6.8.1 Grid indexes
The grid line a-b has too steep slope, with b being the high-
er point. It is surrounded by the cells 1,2,3,4,5 and 6. Point 
a have to be raised, and point b have to be lowered. It is 
important that the sediment continuity is satisfied, so the 
sum of the bed volume changes have to be zero. The areas 
of the cell projections in the horizontal planes for the grid 
cells are called A1, A2 ,A3 ,A4, A5 and A6, for grid cells 
1,2,3,4,5 and 6, respectively. Then the following formula for 
sediment continuity is used:

(6.8.1)

The other equation used is the angle of the slope for line a-
b:

(6.8.2)

The two equations Eq. 6.8.1 and Eq. 6.8.2 are solved to 
give the values of the two unknown δza and δzb.

The algorithm only applies for non-cohesive sediments. If 
the sediments contain cohesive material, the bed slope 
may exceed the angle of repose for non-cohesive material. 
A more complex method is then required. Also note the an-
gle of repose is lower under water then in dry condition. 
Typical angles of repose are 38-45 degrees for dry sand, 
and 30-38 degrees for submerged sand.

6.8 Multiple sediment sizes

In a natural river there will always be a large number of sed-
iment sizes. The CFD model can handle this situation by 
modelling several sediment sizes. The sediments are divid-
ed into groups, and a convection-diffusion equation for 

a                      b

   1                     2                       3

4                      5                      6
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each group is solved. The theory is the same as for a one-
dimensional numerical model.

The bed can be divided into three layers: 

1. The water layer closest to the bed, where the mixture of 
sediments and water move.
2. The upper sediment layer, where the sediments do not 
move with the water, but there is an exchange of sediments 
from this layer and layer 1. This is also called the active lay-
er.
3. The lower sediment layer, below layer 1. This is also 
called the inactive layer

According to Einsteins theory and van Rijn’s formula, the 
sediment concentration in the water layer is a function of 
the shear stress and the sediments in the active layer. If 
multiple sediments are present, the transport capacity of 
each size is reduced by a factor f. It is often assumed that 
f is equal to the size fraction F of the particular size in the 
active layer. This seems logical, when considering the fol-
lowing situation: Ten sediment sizes are modelled, were 
each size has a different colour but has otherwise the same 
size, shape and density. Equilibrium of sediment deposi-
tion and erosion is assumed, and the size fractions in the 
bed of each size is equal. Fi is then 1/10=0.1. Modelling the 
ten sizes should give equal total transport capacity as mod-
elling one size. Then Cb = 10Cb,i. The only solution is:

       fi = Fi                                                           
   
The question of bed armoring is addressed in Chapter 6.9.

Changes in bed grain size distribution

The vertical size of the active layer is usually kept constant. 
When erosion takes place, the active layer may be fed from 
the inactive layer below. Also, when deposition takes 
place, the inactive layer is increased. Sediment continuity 
for each fraction has to be maintained, giving the following 
algorithms. If deposition occurs, each fraction, fa, in the ac-
tive layer will get the following composition:

(6.8.1)

Here, z is the vertical magnitude of the layer, and fd is the 
fractional composition of the deposited sediment. Remem-
ber, f should always be between zero and unity, and this is 
a good test when debugging the program.

fa

fa 0, za fdzd+

za zd+
-----------------------------=
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The vertical magnitude of the active layer usually stays the 
same during the computation, so all of the deposited sedi-
ments can not stay in the active layer. The sediments then 
have to be transferred to the inactive layer. The inactive 
layer then gets the following composition:

(6.8.2)

The index i denotes the inactive layer. The formula applies 
to each size fraction. 

If erosion occur, the same principle of continuity applies. 
Assuming the erosion only takes place in the active layer, 
the following equations emerge:

(6.8.3)

The inactive layer changes correspondingly:

(6.8.4)

The equations for deposition and erosion are similar and 
can be used in situations where both processes occur. For 
example, coarse material may be deposited while finer ma-
terial is eroded.

Erosion of the inactive layer

If the active layer is thin, and the time step is long, there 
may be a possibility that erosion would also take place in 
the inactive layer. There are several ways to avoid the 
problem:

1. Choose a larger size of the active layer
2. Choose a smaller time step
3. Include erosion of the inactive layer

Option 3 gives the following formulas for the fractions:

(6.8.5)

The inactive layer changes correspondingly:

(6.8.6)

In a natural river, the inactive layer may be composed of 
very coarse non-erodible material. The algorithm calculat-
ing the sediment concentration close to the bed has to take 

fi

fi 0, zi faza+

zi za+
---------------------------=

fa

fa 0, za fd– zd

za zd–
--------------------------=

fi

fi 0, zi fa– za

zi za–
------------------------=

fa

fa 0, za fd– zd

za zd–
--------------------------=

fi

fi 0, zi fa– za

zi za–
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this into account by limiting the maximum concentration, 
preventing erosion of the inactive layer. 

6.9 Bed armoring

When multiple sediment sizes are present in the bed, some 
of the finer sediments will hide behind the larger particles. 
The probability of eroding the smaller particles will there-
fore be less than if the bed was composed of only fine par-
ticles. The effect is called bed armoring.

One of the most accepted methods of computing bed ar-
moring was developed by Gessler (1971). The theory is 
based on the assumption that the bed shear stress, τ, has 
a Gaussian distribution. The probability for occurrence of a 
shear stress greater than the critical shear stress, τc, for a 
particle becomes:

(6.9.1)

Here, σ is the standard deviation of the shear stress. 
Gessler found it to be 0.57. 

Gessler found that this probability could be related to the 
mass fraction of the particle in the bed. 

Eq. 6.9.1 can be evaluated numerically using formulas 
based on a curve-fit. The formulas are:

(6.9.2)

(6.9.3)

(6.9.4)

A given sediment size, i, will have an original fraction F in 
the bed. The fraction, f, after erosion can be obtained using 
Eq. 6.9.2-4:

   fi = PiFi (6.9.5)
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 Φ
U

 Qs

Figure 6.11.1 The angle, 
Φ, between the velocity 
vector, U, and the sedi-
ment transport vector Qs
The fractions fi must then be increased so that the sum 
adds up to unity.

The theory predicts the armoring layer after a long time. If 
transient CFD computations are used with relatively short 
time step, the theory is not applicable directly. This is a top-
ic for further research.

6.10 The effect of high sediment concentration 
on the water flow

Einstein and Ning Chien (1955) carried out classical exper-
iments on the velocity profile in a flume with very high con-
centration of sediments. The velocity profile changes in a 
similar way as if the roughness of the bed had been in-
creased. The physical explanation is that sediment parti-
cles jump up into the flow which loses inertia by pushing the 
sediments downstream. Einstein and Ning Chien suggest-
ed the following formula for the change in the κ parameter 
in the wall law:

(6.10.1)

where c is the volume concentration of sediments and κ0 is 
0.4. The formula is valid for concentrations up to 4 % by 
volume close to the bed. It is very seldom the concentra-
tions in natural rivers exceeds this value. 

6.11 Sediment transport on a sloping bed

In Chapter 6.5, the question of critical shear stress for a 
sediment particle on a sloping bed was addressed. When 
using the convection-diffusion equation to compute the 
sediment movement, the sediment will move parallel to the 
velocity vectors. However, if the bed is sloping in the direc-
tion normal to the velocity vector, the individual particles 
may jump slightly more downhill. The effect only applies to 
sediment moving close to the bed. A number of research-
ers (Olesen, 1987; Talmon et. al., 1995; Kikkawa et. al., 
1976; Sekine and Parker, 1992) have studied the phenom-
ena, and derived formulas for the angle, Φ, between the 
sediment transport vector and the velocity vector. For ex-
ample, Kikkawa et. al. (1976) gives the following formula: 

κ
κ0
----- 1

2.5 c+( )
---------------------=
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(6.11.1)

where α is the angle of the slope perpendicular to the water 
flow direction, and τ∗ is a Shields parameter, given by:

 (6.11.2)

where d is the particle size, τ is the shear tress on the bed, 
γs is the specific weight of the sediments and γ is the spe-
cific weight of water. The subscript c on the shear stress in 
Eq. 6.11.1 denotes the critical value for movement of the 
particle.

The formula is fairly straightforward to implement in a CFD 
program. The actual movement of the sediments then have 
to be computed. One solution is to change the directions of 
the velocity vectors according to Eq. 6.11.1 and then com-
pute new fluxes on the cell sides. This can be used to com-
pute new coefficients for the sediment transport equations 
close to the bed. The sediment transport can then be com-
puted with the same algorithms as before.

Φ 0.6

τ*
---------- αtan=

τ*
τ

d γs γw–( )
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List of symbols

Latin

Cm,C1,C2 constants in the k-ε model
c concentration of sediments
D* parameter in van Rijn’s formula for sediment

concentration
d, ds, d50 mean diameter of sediment particle
d90 diameter of sediment particle for which 90%

 is smaller
g acceleration of gravity
h depth of water flow
k turbulent kinetic energy
ks roughness at wall
M Strickler’s friction coefficient in Manning’s

formula
P pressure
Pk term for production of turbulence
qw water discharge pr. unit width of canal
Sc Schmidt number, ratio of turbulent eddy 

viscosity to sediment concentration 
diffusivity

T parameter in van Rijn's formula for sediment
concentration

U average velocity
u fluctuating velocity
u* shear velocity
x coordinate
y coordinate
z coordinate

Greek 

δij Kronecker delta: 1 if i=j, else zero
ε dissipation rate of turbulent kinetic energy 
Γ turbulent diffusivity
κ constant in wall function
ν kinematic viscosity of water
νT turbulent eddy viscosity
ρs density of sediment
ρw density of water
σk,σe constants in the k-ε turbulence model
τ bed shear stress
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